CoaXPress 简介

CoaXPress 背景

CoaXPress (简称CXP)是指一种采用同轴线缆进行互联的相机数据传输标准,主要用于替代之前的cameralink协议,常见于科学相机、工业相机、医学图像、航空防务等场景。之前这些场景都是使用cameralink接口的相机,cameralink 由于线缆的形式、传输速度等原因,已经不再适用于不断增长的数据带宽需求。

CXP是一个非对称的高速点对点串行传输协议,主要用于传输视频和静态图像,线缆多使用单条或多条同轴电缆。目前2.0标准的最高速度为单条lane 12.5Gbps,单条lane 上除了传输图像数据之外,还可以传输低速控制信号(42Mbps,用于访问相机的寄存器配置)、也可以利用该线缆对相机进行供电,这个能力称为 “Power-over-Coax”,单条线缆最长可达100m。

  • 单条同轴线缆最高12.5Gbps的线速率,可以使用单条或者多条线缆,比如4条线缆可以最高提供50Gbps的数据速率.
  • 较长的线缆长度,比如3.125 Gbps 速率下线长可以到100m,12.5Gbps速率下可以到35m,这个线缆的使用是CXP的一大特色.
  • 数据传输具备实时和低延迟的特性,且延迟等是固定的.
  • 精准实时的触发特性,支持通过同轴线缆发送触发,无需额外的线缆.
  • 可以获得灵活可靠的性能,通过使用标准的同轴线缆,比如RG59 和 RG6规格,推荐使用RG6
  • 易于集成的特性,图像、控制通讯、电源可以使用同一条线缆.
  • 线缆价格便宜Cost-effective cabling solutions
  • 支持热插拔.
  • 协议没有授权费用.

与其它图像主流接口的对比

下图是几种流行的图像传输协议标准对比,其中GigE USB3 SDI主要用于安防、手机通讯等领域,CXP、Camera link主要用于工业、科学相机,CLHS和CXP应用场景类似,线缆使用光纤传输,但是不支持线缆供电;

概述

CXP是一种点对点可扩展接口, 设备和主机之间的物理介质为75Ω 同轴电缆。每一个CXP接口都包含1个MASTER连接和若干可选的扩展SLAVE连接,每一个连接都需要1条同轴线缆,通常设备会对这些连接进行编号,MASTER固定为0,SLAVE扩展接口依次递增。

每一个connection都包含如下功能,串行数据使用8b/10b编码

  • 高速串行数据(通常为Device到 Host downconnection), 最高 12.5 Gbps.
  • 低速串行数据(通常为Host 到Device upconnection), 最高 41.6˙ Mbps .
  • 供电功能Power (Host 到 Device), 最高13W. 

CXP链接速度

支持从1.25Gbps到12.5Gbps,这个速度刚好是Xilinx FPGA高速串行收发器可以覆盖的范围

数据传输优先级

控制信号和图像信号共享一个cable连接的带宽,并通过优先级决定传输次序,其中为了保证触发的高实时性,将触发信号列为最高优先级,触发回应列为次优先级,其它类型都在最低优先级。

触发精度

触发信号拥有最高传输优先级,对于20.83Mbps的控制信号链接速度而言,触发信号从HOST到达DEVICE会有固定3.4us的延迟,外加± 4 ns 的精度,如果是 41.6Mbps ,则延迟为1.7us,外加± 2ns的精度。

那么这个固定延迟和精度数据是如何得出的呢?

如下图所示,一个触发的package要占据7个字符(对于20.83Mbps(1个周期48 ns)速率来说,1个字符对应10bit,共480ns,那么7个字符共计7*480 = 3360ns = 3.4us),为了准确的DEVICE端恢复触发信号的位置,在发射端和接收端需要内置一个480/240 = 2 ns精度的计数器,用该计数器的值恢复出触发信号的准确位置,该计数器值通过触发包的最后3个字符传递。

转自:CoaXPress 简介 - Hello-FPGA - 博客园 (cnblogs.com)

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值