目录
- 大模型微调技术演进
- 微调方法选择指南
- 环境准备与工具链搭建
- 全流程实战演示
- 高效微调技术解析
- 企业级解决方案
- 常见问题与调优策略
1. 大模型微调技术演进
1.1 从预训练到微调的技术跃迁
根据Meta最新研究,Llama系列模型微调技术呈现三大发展趋势:
- 计算效率:QLoRA使7B模型微调内存需求从32GB降至8GB
- 模型能力:通过指令微调可使特定任务准确率提升50%+
- 应用场景:医疗领域微调模型已实现90%+的病例分析准确率
1.2 微调方法对比矩阵
方法 | 参数量 | GPU需求 | 训练速度 | 适用场景 |
---|---|---|---|---|
全参数微调 | 100% | 极高 | 慢 | 科研/高精度需求 |
LoRA | 1-5% | 中等 | 较快 | 通用业务场景 |
QLoRA | 0.5-2% | 低 | 快 | 移动端/资源受限 |
Adapter | 3-10% | 中等 | 中等 | 多任务学习 |