介绍
上一篇博客介绍了Fast RCNN中的ROI Pooling原理,网络只需一次特征提取过程,不同尺寸的候选框映射到feature map对应位置上,经过该结构后可变成相同大小的特征向量作为全连接层的输入。但是对于候选框的选取仍然保留了RCNN中的Selective Search策略,这显然限制了网络的速度,因此RPN(Region Proposal Network)被提出作为候选框的提取网络,在加速了检测过程的同时,RPN也可以很容易结合到Fast RCNN中,从而把物体检测整个流程融入到一个神经网络中成为一个整体,即Faster RCNN。
原理
Faster RCNN的整体流程如下图,其中RPN接收一个特征图作为输入,输出一系列目标物体出现可能性较高的候选框。在分析RPN原理之前,需要先介绍一下Anchor的概念。
Anchor
RPN的目标是代替Selective Search实现候选框的提取,目标检测的实质是对候选框的回归,而网络不可能自动生成任意大小的候选框,因此Anchor的主要意义就在于根据feature map在原图片上划分出很多大小、宽高比不相同的矩形框,RPN会对这些框进行一个粗略的分类和回归,选取一些微调过的包含前景的正类别框以及包含背景的负类别框,送入之后的网络结构参与训练。