AI大模型系列1:文明基石,文字与数字的起源与演变

文明基石,文字与数字的起源与演变

1、文字

1.1、起源

我们的祖先在还没有发明文字和语言之前就已经开始使用“咿咿呀呀”的声音来传播信息了,比如在野外活动遇到危险,然后发出“咿咿呀呀”的声音来提醒同伴小心,同伴在接收到信息后首先要做的就是解码,从“咿咿呀呀”中解读想要传递的信息。

对发明并掌握文字的现代人来说,只是将祖先的“咿咿呀呀”替换成了象形文字和楔形文字,但是其本质都是为了传递信息。之所以会诱导我们的祖先发明文字,是因为其掌握的信息越来越多、语言越来越丰富和越来越抽象,人类大脑已经很难记住这么多的词汇,最终我们的祖先为了高效的记录信息,便走上发明文字的道路。 image.png   约在公元前3400年左右,苏美尔人发展出了楔形文字,这是目前已知的最早的完整文字系统之一。楔形文字最初是以图画为基础,但很快就发展成为一种表意和表音的混合系统。这种文字系统在美索不达米亚地区(伊拉克境内)广泛使用,并由腓尼基人传播到其他地区。

在甲骨文(公元前14世纪)出现的前约两千年(公元前24世纪左右),古埃及文明已开始使用图形表示事物,形成了最早的象形文字。无论是甲骨文还是古埃及的象形文字早期文字的数量都是和想要记录的信息相关,由于人类掌握的信息越来越多,象形文字就从刚开始的几百个,渐渐发展成几个千。此时的先祖们又一次站在的推动历史进程的拐点,开始了第一次对象形文字的归纳总结,从而就出现了一词多义的多义词、一词多音的多音词等等。

高度概括又带来了难理解和歧义,不同的人接收到同一段文字可能会做出不同的解读。为了解决这样的问题就只能依靠上下文,其可以解决大多数歧义(除非估计捣乱)。我们阅读古籍看见的下面的标注,其实就是后人结合上下文按照自己理解进行去歧义的过程。

1.2、本质

从文明古国文字起源不难看出都是因为随着对世界的认识越来越丰富,带来的信息也越来越多,原有记录信息和传播信息的方式已经不能满足当下需求不得不做出的演进。各文明古国在历史上相互隔绝,在没有交流沟通的前提下形成了不同的文字,但是其文字背后的本质都是为了记录所见所谓、所思所想的信息。

我们把时间线拉到秦始皇统一六国之前春秋战国时期,在秦始皇还没有统一六国之前各国都有自己的文字和语言,各国之间商贸之所以能正常进行,正是因为在文字的本质是信息这个大前提下产生了翻译。当下翻译很常见,中英互翻和中法互翻等等,同样也没有逃过文字只是信息的载体,而非信息本身的底层本质。

2、数字

2.1、起源

文字的出现是因为我们祖先掌握越来越多的信息导致大脑不能有效的记住这些信息,那么数字的出现也是因为我们祖先掌握的东西越来越多,只是这里的东西换成了财产。在远古时期我们的祖先拥有的财产可能就只有身上的几片树叶,根本没有到需要数一数的地步,所以就用不上数字,但是随着生产力的提高和部落的出现个人拥有的财产也随之增长,此时就到了需要数一数才能搞清楚自己有多少财产的时候了。

正如一则小故事,两个部落首领要比一比谁说的数字大,A首领想了想说3,B首领因为家境贫寒想了半天没能想出比3大的数字,并说你赢了。由此数字的发明就是为了记录财产等需要数一数才能清楚有多少的东西。

我们的祖先早期就是通过掰手指来数数,刚学加减法时候的我们也是如此,恰好人类双手有十根手指,便有了我们日常使用的十进制,如果人类手指不是十根,那么我们现在可能使用的就是其它进制的计数系统了。但是玛雅文明并没有使用十进制,而是将脚趾的十根也加了进来形成了二十进制,从而玛雅文明的计数法就和其他文明在本质上就有了区别,这可能也是玛雅文明如此神秘的原因之一吧。十多年前关于2012年世界末日的传说也是对玛雅文明技术系统的误解和夸大,玛雅人使用二十进制那么他们的日历系统也是基于二十进制的“长计数历”,并从公元前3114年8月11日玛雅文明的创世日期开始计算,正好到2012年12月21日为一个长计数历结束,所以这个日期只是表示一个周期结束和新周期的开始,而不是世界的终结。

2.2、发展

约在35000年前人类就有了计数系统,但是所有古文明的计数系统在1、2、3的记录方式都是采用简单书写的几横(中国)、几竖(罗马)或者几点(美索不达米亚)。因为我们的祖先使用十进制的计算系统,那么在记录大数字的时候就又有编码的过程,如中国使用个十百千万亿兆来表示进位,罗马则使用相对复杂的系统来表示进位。

同样是逢十进一中国使用十百千万亿兆来进行编码,然后使用乘法的规则进行解码,如一百万写法的含义就是1 * 100 * 10000。而罗马使用“I代表1、V代表5、X代表10、L代表50、C代表100、D代表500、M代表1000”的系统来进行编码,然后使用加减法的规则进行解码(小数字出现在大数字左边为减、右边为加),如IV表示5-1=4,VI表示5+1=6,二者一比较高下立判。

虽然中国和罗马在数字都有自己的独特发明,但是最高效的还是印度人发明由阿拉伯人传播包含0在内的10个阿拉伯数字,因为其便利性进而推广为全世界通用的数字计数系统。阿拉伯数字具有高度的抽象性,它很好的将文字和数字进行了分离,而不是像中国和罗马那么在文字上创造数字使得二者高度耦合。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值