ChatGLM3是清华、智谱2023年开源的一款大模型。ChatGLM3-6B模型代码,目前还在研读中,尚未全部读完。
图1为ChatGLM3-6B模型简图,其结构基于Transformer Encoder架构的Encoder,大体上与BERT架构类似。ChatGLM3实现模型架构时,已预置支持P-tuning v2微调结构,图7中的PrefixEncoder,负责将若干Prefix Tokens映射到各GLM Block层的输入层,并与上一个GLM Block层的输出结合为当前GLM Block层的输入。后续各落地场景数据,只需通过P-tuning v2微调Prefix encoder即可。
图1 ChatGLM3-6B模型简图
1、算法论文及代码
- 论文
《General Language Model Pretraining with Autoregressive Blank Infilling》
https://arxiv.org/pdf/2103.10360
- 代码
https://modelscope.cn/models/ZhipuAI/chatglm3-6b/files
2、P tuning-v2微调机制
ChatGLM3模型内置支持P-tuning v2微调,图7中最左边一列始从Prefix tokens,然后自底向上Prefix Embedding X,这条支线是为后续微调ChatGLM3大模型,预置的微调结构。
图2以第X层GLM Block为例,更为详细地描述P-tuning v2微调是如何实现的,图2中的Prefix序列有2个token:(t1,t2),经由PrefixEncoder编码后,得到一个维度为\[2, num\_layers\*hidden\_size\*2\]的Prefix序列矩阵,第1个维度取值2,表示有2个token,即t1和t2,第2个维度取值,表示在每一层GLM Block,都会有2个(t1, t2)的Prefix序列,其中第1个(t1,t2)是输入给k矩阵的,而第2个(t1, t2)是输入给v矩阵的,且每一个t1、t2,其向量长度为hidden\_size。
从图2可知,ChatGLM3的每一层GLM Block,均可微调其输入中的k矩阵和v矩阵。由于引入了更多的微调参数,P-tuning v2相较P-tuning v1只能微调第一层GLM Block,其表达能力和微调效果,理论上会好很多。
图2 ChatGLM3之P-tuning v2实现原理
3、LoRA****微调
ChatGLM3除了“天然”支持P-tuning v2微调,还支持LoRA微调,但LoRA微调是通过peft库实现,即Parameter Efficient Finetune。
4、模型量化
ChatGLM3在加载模型时,可动态地进行4位或8位量化。ChatGLM3实际执行量化的代码,是由C/C++编写,并将编译后的可执行代码做BASE64编码,然后将base64编码结果通过硬编码的方式,写死在ChatGLM3的实现python代码中,即图3中的quantization_code变量存储的字符串,即量化代码字节流的base64编码。
将quantization\_code值经由Base64解码和BZ2解压缩后,得到一串字节流,见图3中右下角的命令行区域。
图3 ChatGLM3加载量化代码原理
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓