前言
为什么要在word中接入大模型呢?
个人觉得最大的意义就是不用来回切换与复制粘贴了吧。
今天分享一下昨天实践的在word中接入大模型的教程。
在word中接入大模型最简单的方式就是使用vba。
vba代码要做的事,拆分一下就是:
-
获取用户选中的文本,未选择弹窗提示。
-
向大模型API接口发送一个Post请求。
-
解析返回的json数据,获取content的内容。
-
为了用户体验,打造假流式效果。
效果
实践
第一步:获取用户选中的文本,未选择弹窗提示。
vba代码:
Sub GetSelectedText() Dim selectedText As String If Selection.Type = wdSelectionIP Then ' 如果是插入点(光标闪烁),则未选择文本 MsgBox "未选中任何文本!请先选择文本。", vbExclamation Else selectedText = Selection.Text If Trim(selectedText) = "" Then ' 再次检查 Trim 后的文本是否为空,以防用户只选择了空格 MsgBox "未选中任何文本!请先选择文本。", vbExclamation Else MsgBox "选中的文本是: " & selectedText End If End If End Sub
效果:
第二步:向大模型API接口发送一个Post请求。
在第一步中获取的文本大概率会包含换行符,如果没有去掉,在发送请求的时候会报错,因此第一步的完整代码还需要包括去除换行符的部分,完整代码如下所示:
`Dim selectedText As String If Selection.Type = wdSelectionIP Then ' 如果是插入点(光标闪烁),则未选择文本 MsgBox "未选中任何文本!请先选择文本。", vbExclamation Else selectedText = Selection.Text If Trim(selectedText) = "" Then ' 再次检查 Trim 后的文本是否为空,以防用户只选择了空格 MsgBox "未选中任何文本!请先选择文本。", vbExclamation Else ' **** 在这里添加删除换行符的代码 **** selectedText = Replace(selectedText, Chr(13), "") ' 删除回车符 (CR) selectedText = Replace(selectedText, Chr(10), "") ' 删除换行符 (LF) End If End If`
在vba中发送Post,可以使用MSXML2.XMLHTTP,代码如下:
API = "https://api.siliconflow.cn/v1/chat/completions" inputText = selectedText SendTxt = "{""model"": ""meta-llama/Llama-3.3-70B-Instruct"", ""messages"": [{""role"":""system"", ""content"":""你是一个word助手,直接输出文本,不要用md格式。""}, {""role"":""user"", ""content"":""" & inputText & """}], ""stream"": false}" 'MsgBox SendTxt, vbExclamation 'Selection.TypeText Text:=SendTxt api_key = "sk-xxx" Set Http = CreateObject("MSXML2.XMLHTTP") With Http .Open "POST", API, False .setRequestHeader "Content-Type", "application/json" .setRequestHeader "Authorization", "Bearer " & api_key .send SendTxt status_code = .Status response = .responseText End With
这里使用的是硅基流动的平台,使用其它平台需要修改的地方为API接口地址、模型名称与对应的api_key。
第三步:解析返回的json数据,获取content的内容。
为方便起见,我使用的是正则表达式进行content内容的提取。
代码如下所示:
Dim regExp As Object Set regExp = CreateObject("VBScript.RegExp") regExp.Pattern = """content"":""([^""]*)""" regExp.Global = True Dim matches As Object Set matches = regExp.Execute(response) Dim content As String content = matches(0).SubMatches(0)
第四步:为了用户体验,打造假流式效果。
为了不覆盖选中的内容,需要移动光标。然后为了用户体验,打造假流式效果。
代码如下所示:
Selection.MoveDown Unit:=wdLine, Count:=1 Selection.TypeParagraph ' 插入一个新段落,确保在下一行开始 For i = 1 To Len(content) Dim char As String char = Mid(content, i, 1) Selection.TypeText Text:=char Dim startTime As Single startTime = Timer Do While Timer < startTime + 0.02 DoEvents Loop Next i
直接使用我分享的插件
感兴趣的朋友,可以根据我的分享,直接去写一下。但是很多朋友对vba可能不感兴趣,只是想在word中直接使用。
接下来我将手把手分享,如何使用我分享的插件。
首先关注公众号“小铭同学的AI工具学习记录”,发送“Word插件”,即可获取word插件。
第一步:获取大模型的API Key。
这里根据大家自己使用的大模型平台而定。
如果没有使用过,我比较推荐硅基流动这个平台,新用户注册有14元永久额度,很多其它平台额度都是有期限的。
邀请链接:https://cloud.siliconflow.cn/i/Ia3zOSCU。
注册完成之后,点击API密钥,新建一个API密钥。
模型名称在模型广场可以复制,比较推荐的是:deepseek-ai/DeepSeek-R1、deepseek-ai/DeepSeek-V3、meta-llama/Llama-3.3-70B-Instruct、Qwen/Qwen2.5-72B-Instruct-128K与Qwen/Qwen2.5-72B-Instruct。
第二步:在word中导入插件。
关注公众号“小铭同学的AI工具学习记录”,发送“Word插件”,即可获取word插件。
下载下来,如下所示:
文件——》选项——》信任中心——》信任中心设置——》启用所有宏——》确定。
文件——》选项——》自定义功能区——》勾选开发工具。
开发工具——》Visual Basic。
文件——》导入文件——》选择刚刚下载的Word插件。
然后如果使用的是硅基流动,在这两个文件的api_key位置填入自己的api_key即可,如果选择其它平台,如果兼容openai格式,改一下api地址、模型名称然后填入自己的api_key即可。
点击保存,会出现下面这个提示。
选择否,然后启用宏。
可以在不使用这个功能的时候,另存为docx就好了。
回到开发工具,新建一个分组。
选择宏,添加到AI助手中。
现在word就出现了刚刚添加的插件:
第三步:使用插件
选中文本,再点击选择的功能即可。
AI助手是直接提问,AI论文扩写助手是进行论文扩写。
直接提问
AI论文扩写
最后
如果你在实践过程中,遇到了问题,也可以联系我哦。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓