Word中接入大模型API教程

前言

为什么要在word中接入大模型呢?

个人觉得最大的意义就是不用来回切换与复制粘贴了吧。

今天分享一下昨天实践的在word中接入大模型的教程。

在word中接入大模型最简单的方式就是使用vba。

vba代码要做的事,拆分一下就是:

  1. 获取用户选中的文本,未选择弹窗提示。

  2. 向大模型API接口发送一个Post请求。

  3. 解析返回的json数据,获取content的内容。

  4. 为了用户体验,打造假流式效果。

效果

实践

第一步:获取用户选中的文本,未选择弹窗提示。

vba代码:

Sub GetSelectedText()     Dim selectedText As String        If Selection.Type = wdSelectionIP Then ' 如果是插入点(光标闪烁),则未选择文本       MsgBox "未选中任何文本!请先选择文本。", vbExclamation     Else       selectedText = Selection.Text       If Trim(selectedText) = "" Then  ' 再次检查 Trim 后的文本是否为空,以防用户只选择了空格         MsgBox "未选中任何文本!请先选择文本。", vbExclamation       Else         MsgBox "选中的文本是: " & selectedText       End If     End If   End Sub   

效果:

image-20250217102026941

image-20250217102101716

第二步:向大模型API接口发送一个Post请求。

在第一步中获取的文本大概率会包含换行符,如果没有去掉,在发送请求的时候会报错,因此第一步的完整代码还需要包括去除换行符的部分,完整代码如下所示:

 `Dim selectedText As String        If Selection.Type = wdSelectionIP Then ' 如果是插入点(光标闪烁),则未选择文本       MsgBox "未选中任何文本!请先选择文本。", vbExclamation     Else       selectedText = Selection.Text       If Trim(selectedText) = "" Then  ' 再次检查 Trim 后的文本是否为空,以防用户只选择了空格         MsgBox "未选中任何文本!请先选择文本。", vbExclamation       Else        '  **** 在这里添加删除换行符的代码 ****         selectedText = Replace(selectedText, Chr(13), "") ' 删除回车符 (CR)         selectedText = Replace(selectedText, Chr(10), "") ' 删除换行符 (LF)       End If     End If`

在vba中发送Post,可以使用MSXML2.XMLHTTP,代码如下:

API = "https://api.siliconflow.cn/v1/chat/completions"       inputText = selectedText              SendTxt = "{""model"": ""meta-llama/Llama-3.3-70B-Instruct"", ""messages"": [{""role"":""system"", ""content"":""你是一个word助手,直接输出文本,不要用md格式。""}, {""role"":""user"", ""content"":""" & inputText & """}], ""stream"": false}"       'MsgBox SendTxt, vbExclamation       'Selection.TypeText Text:=SendTxt              api_key = "sk-xxx"               Set Http = CreateObject("MSXML2.XMLHTTP")       With Http       .Open "POST", API, False       .setRequestHeader "Content-Type", "application/json"       .setRequestHeader "Authorization", "Bearer " & api_key       .send SendTxt       status_code = .Status       response = .responseText       End With   

这里使用的是硅基流动的平台,使用其它平台需要修改的地方为API接口地址、模型名称与对应的api_key。

第三步:解析返回的json数据,获取content的内容。

为方便起见,我使用的是正则表达式进行content内容的提取。

代码如下所示:

Dim regExp As Object   Set regExp = CreateObject("VBScript.RegExp")       regExp.Pattern = """content"":""([^""]*)"""       regExp.Global = True          Dim matches As Object   Set matches = regExp.Execute(response)          Dim content As String   content = matches(0).SubMatches(0)   

第四步:为了用户体验,打造假流式效果。

为了不覆盖选中的内容,需要移动光标。然后为了用户体验,打造假流式效果。

代码如下所示:

Selection.MoveDown Unit:=wdLine, Count:=1       Selection.TypeParagraph ' 插入一个新段落,确保在下一行开始              For i = 1 To Len(content)           Dim char As String           char = Mid(content, i, 1)           Selection.TypeText Text:=char           Dim startTime As Single           startTime = Timer           Do While Timer < startTime + 0.02               DoEvents           Loop       Next i   

直接使用我分享的插件

感兴趣的朋友,可以根据我的分享,直接去写一下。但是很多朋友对vba可能不感兴趣,只是想在word中直接使用。

接下来我将手把手分享,如何使用我分享的插件。

首先关注公众号“小铭同学的AI工具学习记录”,发送“Word插件”,即可获取word插件。

第一步:获取大模型的API Key。

这里根据大家自己使用的大模型平台而定。

如果没有使用过,我比较推荐硅基流动这个平台,新用户注册有14元永久额度,很多其它平台额度都是有期限的。

邀请链接:https://cloud.siliconflow.cn/i/Ia3zOSCU。

注册完成之后,点击API密钥,新建一个API密钥。

image-20250217110244129

模型名称在模型广场可以复制,比较推荐的是:deepseek-ai/DeepSeek-R1、deepseek-ai/DeepSeek-V3、meta-llama/Llama-3.3-70B-Instruct、Qwen/Qwen2.5-72B-Instruct-128K与Qwen/Qwen2.5-72B-Instruct。

第二步:在word中导入插件。

关注公众号“小铭同学的AI工具学习记录”,发送“Word插件”,即可获取word插件。

下载下来,如下所示:

image-20250217111511497

文件——》选项——》信任中心——》信任中心设置——》启用所有宏——》确定。

image-20250217122533249

文件——》选项——》自定义功能区——》勾选开发工具。

image-20250217111659589

开发工具——》Visual Basic。

image-20250217111905533

文件——》导入文件——》选择刚刚下载的Word插件。

image-20250217112147489

然后如果使用的是硅基流动,在这两个文件的api_key位置填入自己的api_key即可,如果选择其它平台,如果兼容openai格式,改一下api地址、模型名称然后填入自己的api_key即可。

image-20250217112351894

点击保存,会出现下面这个提示。

image-20250217112451435

选择否,然后启用宏。

image-20250217112537868

可以在不使用这个功能的时候,另存为docx就好了。

回到开发工具,新建一个分组。

image-20250217112744079

选择宏,添加到AI助手中。

image-20250217112915087

现在word就出现了刚刚添加的插件:

image-20250217113030084

第三步:使用插件

选中文本,再点击选择的功能即可。

AI助手是直接提问,AI论文扩写助手是进行论文扩写。

直接提问

image-20250217113436348

AI论文扩写

image-20250217114503471

最后

如果你在实践过程中,遇到了问题,也可以联系我哦。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 集成本地大规模预训练语言模型到Microsoft Word 为了在 Microsoft Word接入并使用本地部署的大规模预训练语言模型 (LLM),可以采用插件或的方式实现自动化文本生成或编辑功能。具体方法涉及创建一个能够调用本地 LLM API 的应用程序接口,并通过 VBA 或 Office Add-in 将其连接至 Word。 #### 方法一:利用Office Add-ins技术 1. 开发基于JavaScript/TypeScript的Office Add-in,该Add-in负责与本地运行的语言模型服务器通信。 2. 使用 RESTful API 或 gRPC 协议发送请求给本地 LLM 服务端口,传递待处理文档片段作为输入数据。 3. 接收来自 LLM 的响应结果后,在 Word 文档内显示预测的文字内容或者建议修改意见。 ```javascript // JavaScript 示例代码用于发起HTTP POST 请求到本地LLM服务 fetch('http://localhost:8000/predict', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ text: "需要分析的内容" }) }) .then(response => response.json()) .then(data => console.log(data.prediction)); ``` #### 方法二:借助VBA脚本编程 对于熟悉 Visual Basic for Applications(VBA) 用户来说,也可以考虑编写一段简单的 VBA 来完成相同的功能: - 创建 COM 对象实例指向外部 Python 脚本或其他可执行文件; - 编写 Python 脚本来封装对本地 LLM 的调用逻辑; - 在 VBA 中定义按钮控件触发事件处理器函数,从而启动整个流程。 ```vba Sub CallLocalModel() Dim objShell As Object Set objShell = CreateObject("WScript.Shell") objShell.Run ("C:\path\to\your_script.bat"), , True End Sub ``` 以上两种方案均需确保本地计算机上已成功安装并配置好相应的 LLM 及配套环境[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值