线代笔记

1.1线性方程组
1)相容:一个线性方程组有一个解或无穷多个解;不相容:无解
2)线性方程组每一个变量的系数写成矩阵,称为系数矩阵
3)增广矩阵:再加一列解
4)矩阵的维数说明它包含的行数和列数
5)行初等变换:<1>倍加变换 <2>对换变换 <3>倍乘变换
6)行等价:经过一系列行初等变换后把矩阵A变为矩阵B,则A B行等价。如果两个矩阵行等价,它们有相同的解

1.2行化简和阶梯型矩阵
1)先导元素 :非零行的先导元素是该行最左边的非零元素

2)一个矩阵为阶梯型:
<1>每一个非零行在每一个零行之上
<2>某一行的先导元素所在的列位于前一行先导元素的后面
<3>某一先到元素所在列下方元素都是零
简化阶梯型 :
<4>每一非零行的先导元素是1
<5>每一先导元素1是该元素所在列唯一的非零元素

3)每个矩阵行等价于一个且仅有一个简化阶梯型

4)给定矩阵化简时,先导元素总是在同一位置

5)主元位置:矩阵中的主元位置时A中对应于它的简化阶梯型中先导元素的位置。主元列是A中含有主元位置的列

6)基本变量:对应于主元列的变量 自由变量

7)X1 = 1 + 5 X3; X2 = 4 - X3; X3是自由变量 ——称为通解

8)线性方程组相容的充要条件是增广矩阵的最右列不是主元列,就是说,没有形如[0 … 0 b] b != 0的形式 。若有自由变量,有无穷多解,若无自由变量,只有一个解(记住:方程组中有自由变量并不能保证方程组有解)

9)行化简的步骤:1.写增广矩阵 2.化为阶梯型,判断是否有解 3.化为简化阶梯型 4.写出3中所得矩阵对应的线性方程组 5.自由变量表示基本变量

1.3向量方程
1)仅含一列的矩阵称为列向量,或简称向量。两个向量相等,当且仅当对应的元素相等

2)向量u + v = v + u

3)Y = c1v1 + c2v2 + … +cpvp 叫做向量v1 v2 … vp以c1 c2 …cp为权的线性组合

4)[a1 a2 … an b] 和 x1a1+x2a2+ … xnan = b有相同的解集 。b可以由a的线性组合生成当且仅当线性方程组有解

5)V1 V2 … Vn 是Rn中的向量,Span{V1,V2……Vp}表示V1,V2, V3…Vp所生成的Rn的子集,即V1,V2,…….Vp所有线性组合
1.4矩阵方程
1)方程AX = b有解当且仅当b是A各列的线性组合
2)设A是m*n矩阵(系数矩阵),下列命题是等价的,同时成立或不成立
<1>对Rm中每个b,方程Ax = b有解
<2>Rm中的每个b都是A的列的一个线性组合
<3>A的各列生成Rm
<4>A在每一行都有一个主元位置
3)若A是矩阵,u和v是Rn中的向量,c是标量,则 <1>A(u+v)=Au+Av <2>A(cu)=c(Au)

4)单位矩阵:主对角线元素是1,其他位置元素为0

1.5线性方程组的解集
1)齐次:线性方程组可写成Ax=0,其中A是m*n矩阵而0是Rm中的零向量

2)平凡解:这样的方程组至少有一个解x=0;这个解称为它的平凡解

3)Ax=0有非平凡解,当且仅当方程至少有一个自由变量

4)解的参数向量形式:x = su + tv (s,t是实数)

5)非齐次:Ax = b ,通解可写成:x = p + tv(t为实数),Ax = 0的解为x = tv

6)Ax = b 是通过p平行于v的直线方程

7)设Ax = b对某个b相容,p为一个特解,则Ax = b的解集是所有形如w = p + v的向量集,v是Ax = 0的任意一个解

1.7线性无关
1)R^n中一组向量{V1,…..Vp}称为线性无关,若方程x1v1+x2v2+…+xpvp = 0仅有平凡解。
线性相关:存在不全为0的权c1,c2,….,cp , 使c1v1+c2v2+…+cpvp = 0

2)矩阵A的各列线性无关,当且仅当Ax=0仅有平凡解

3)两个向量的集合{v1,v2}线性相关,当且仅当其中一个向量是另一个向量的倍数

4)两个或更多向量的集合S = {v1,v2…..vp}线性相关,当且仅当S中至少有一个向量是其他向量的线性组合

5)若一个向量组的向量个数超过每个向量的元素个数,那么这个向量组线性相关

6)若向量组S 包含零向量,则它线性相关

1.8线性变换
1)x –> Ax。由Rn到Rm的一个变换(或称函数,映射)T是一个规则,它把Rn中的每个向量x对应以Rm中的一个向量T(x)。集Rn称为T的定义域,而Rm称为T的余定义域(或取值空间)。对与Rn中的x,Rm中向量T(x)称为x的像,所有T(X)的集合称为T的值域

2)变换T为线性的,若<1>对T的定义域中一切u,v,T(u + v) = T(u)+T(v) <2>对一切U和标量c, T(cu)= cT(u).

3)若T是线性变换,则<3>T(0) = 0, <4> T(cu + dv) = cT(u)+dT(v).若一个变换满足4,它必为线性变换

1.9矩阵的线性变换
1)存在矩阵A,使T(x)= Ax. 因为A = AIm = T(Im), 所以对x和Im作相同的变换

2)A叫做线性变换T的标准矩阵

4)映射T:Rn –> Rm称为到Rm上的映射,若Rm中任一b至少有一个Rn中的x和它对应,也称满射。若任一b使至多一个x的像,则称为一对一映射(也叫单射)

5)设T是线性变换。则T是一对一的当且仅当Ax= 0仅有平凡解

6)设T:Rn –> Rm为线性变换,设A为T的标准矩阵,则
<1>T把Rn映上到Rm,当且仅当A的列生成Rm
<2>T是一对一的,当且仅当A的列线性无关
2.1矩阵运算
1)AB = {Ab1 Ab2 Ab3….Abp}

2)矩阵A和B:AB的每一列都是A的各列的线性组合,以B的对应列的元素为权

3) 行列法则:AB的第i行第j列的元素是A的第i行与B的第j列对应元素乘积之和。即(AB)ij = ai1b1j + ai2b2j + …. +ainbnj

4)row i (AB) = row i (A) B

5)AB != BA 若AB = BA,称A和B可交换
AB = AC 不能得到B = C

6)若AB是零矩阵,不能断定A = 0 或 B = 0

7)Ak:假如A不是零矩阵,且x属于Rn,表示x被A连续左乘k次,A0表示单位矩阵

8)(AB)T = BT*AT,若干个矩阵的乘积的转置等于它们转置的乘积,但顺序相反
2.2矩阵的逆
1)不可逆矩阵称为奇异矩阵,可逆矩阵称为非奇异矩阵

2)若A为

[acbd]

A-1 =

1adbc
*
[dcba]

若detA = 0, 矩阵不可逆

3)若A为可逆,则Ax = b 有唯一解x = A-1 b

4) (A-1)-1 = A
(AB)-1 = B-1 A-1
(AT)-1 = (A-1)T

5)若干个n*n可逆矩阵的积也是可逆的,其逆等于这些矩阵的逆按相反顺序的乘积

6)初等矩阵:把单位矩阵进行一次行变换

7)对A进行行变换得到EA,E是由I经过同一行变换得来

8)每个初等矩阵E都是可逆的,E的逆把E变成I

9)判断矩阵可逆:n*n矩阵A是可逆的,当且仅当A行等价于I,这时把A变成I的一系列初等变换把I变成A1

10)求A1的算法:
把增广矩阵[A I]进行行化简,若A行等价于I,则[A I]行等价于[I A-1],否则A没有逆

2.3可逆矩阵的特征
1)设A为n*n矩阵,下列命题是等价的
<1>A是可逆矩阵
<2>A等价于n*n单位矩阵
<3>A有n个主元位置
<4>方程Ax = 0仅有平凡解
<5>A的各列线性无关
<6>线性变换x -> Ax是一对一的
<7>对Rn中任意b,方程Ax = b只有一个解
<8>A的各列生成Rn
<9>线性变换x -> Ax把Rn映上到Rn
<10>存在n*n矩阵C使CA=I
<11>存在n*n矩阵D使AD=I
<12>AT是可逆的
<13>设T:Rn–>Rn为线性变换,A为T的标准矩阵,则T可逆当且仅当A是可逆矩阵,这时S(T(X)) = X, S是T的逆
2.4分块矩阵
1)AB的列行展开:若A是m*n矩阵,B是n*p矩阵,则
AB = col1(A)row1(B)+……coln(A)rown(B)

2)求分块矩阵的逆(见课本p137)

3)对于AB = 0 若AB均不可逆,不可判断A,B是否为0,若A或B可逆(假设A),则B=0

2.5矩阵因式分解
2.8 R^n的子空间
1)Rn中的一个子空间是Rn中的集合H,具有一下三个性质:
<1>零向量属于H (零向量一定属于任何空间)
<2>对H中任意向量u和v,u+v属于H
<3>对H中任意向量u和数c,cu属于H

2)A的列空间:A的各列的线性组合的集合,记作ColA, A的列空间是所有使方程有解的向量b的集合。m行n列矩阵的列空间是Rm的子空间,

3)A的零空间:A的零空间是齐次方程Ax= 0的所有解的集合,记为NulA。当A有n列时,NulA时Rn的子空间

4)Rn中子空间H的一组基是H中一个线性无关集,它生成H

5)AX=0的解的参数向量形式实际上就是NULA的基

6)A的主元列构成ColA的基
2.9维数和秩
1)假设B = {b1,…,bp}是子空间H的一组基,对H中的每一个向量x,相对于基B的坐标是使x=c1b1+c2b2+…..+cpbp成立的权值c1,c2,….,cp,且Rp中的向量[x]B=

c1c2c3c4
称为x(相对于B)的坐标向量,或x的B-坐标向量

2)子空间的维数:非零子空间的维数,用dimH表示,是H的任意一个基的向量个数,零子空间{0}的维数定义为0

3)矩阵A的秩(记为rankA)是A的列空间的维数,因为A的主元列生成ColA的一个基,A的秩正好是A主元列的个数

4)NULA的维数恰好是Ax=0中的自由变量的个数

5)秩定理:如果矩阵A有n列,则rankA+dimNulA = n

6)基定理:设H是Rn的p维子空间,H中的任何恰好由p个成员组成的线性无关集构成H的一个基,并且,H中任何生成H的p个向量集也构成H的一个基
7)可逆矩阵的定理(续)
1.A的列向量构成Rn的一个基
2.ColA = Rn
3.Dim ColA = rank A = n
4.Nul A = {0}
5.Dim Nul A = 0

3.1略

3.2行列式的性质
1)设A为一个方阵
1.若A的某一行的倍数加到另一行得矩阵B,则detB = detA
2.若A的两行互换的矩阵B,则detB = - detA
3.若A的某行乘以k倍得到矩阵B,则detB = kdetA
4.方阵A是可逆的当且仅当detA!=0 (推论:若A的列线性相关,或者A的行线性相关,则detA=0)
5.若A为一个n*n矩阵,则det AT=det A
6.若A和B均为n*n矩阵,则detAB = (detA)(detB) (一般情况下,det(A+B)!=detA + detB)

3.3克拉默法则
1)设A是一个可逆的n*n矩阵,对Rn中任意向量b,方程Ax=b的唯一解表示为:
xi=

detAi(b)detA
,i = 1, 2, …..,n
2)求A -1
假设A -1的第j列为向量x,满足Ax = e j,由克拉默法则,x的第i个数值是A -1中(i,j)x i =
detAi(ej)detA

detA i(ej) = (-1) i+jdetA ji
3)A -1=1/det adjA

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值