稀疏阵列!!!

1 稀疏阵列

稀疏阵列通常指的是一个大部分元素为零的矩阵,这种矩阵在存储和计算时可以采用特殊的优化方法来提高效率。在天线技术领域,稀疏阵列也指的是按照一定规律减少阵元数量的天线阵列设计,这样的设计可以在不显著降低天线性能的情况下减少成本和复杂度。
稀疏阵列的设计方法主要分为三类:
确定性稀疏化方法:基于解析公式或给定模型得到确定的稀疏阵列分布。基于差集和几乎差集的稀疏综合算法、参考口径幅度渐变确定分布密度的稀疏算法。
数值方法的快速综合:如矩阵束方法迭代傅里叶方法等。
智能优化算法的稀疏阵列综合:如遗传算法粒子群算法等。
这些方法能够根据不同的应用需求,设计出满足特定性能指标的稀疏阵列天线。

参考文章:相控阵天线(五):稀疏阵列天线(概率密度稀疏法、多阶密度加权法、迭代傅里叶(IFT)法)
参考文章:相控阵天线(二):非规则直线阵列天线(稀布阵列、稀疏阵列、平方率分布阵列、含python代码)
参考文章:人工智能:遗传算法稀布阵列天线

%基于均匀线性阵列的稀疏阵列的经典music算法
% 参数设置
d = 0.25; % 阵元间距,单位为波长
N = 20; % ULA的阵元数量
K = 4; % 信号源数量
theta = [30, 60,20,50]; % 信号源方向,单位为度
P = 1000; % 快拍数
snr = 10; % 信噪比,单位为dB
 
% ULA信号模拟
lambda = 1; % 假设波长为1
A = exp(-1i*2*pi*d*(0:N-1)'*sin(deg2rad(theta))); % 阵列流型矩阵
S = sqrt(1/2)*(randn(K, P) + 1i*randn(K, P)); % 信号源
X = A*S; % ULA接收到的信号
X = awgn(X, snr, 'measured'); % 加入噪声
 
% 稀疏化处理
%sparse_index = [1, 3, 5, 7, 9]; % 选择部分阵元构成稀疏阵列
sparse_index = 1:2:N; % 选择间隔的阵元构成稀疏阵列
X_sparse = X(sparse_index, :); % 稀疏阵列接收到的信号
 
% 协方差矩阵计算
R_sparse = X_sparse*X_sparse'/P;
 
% MUSIC算法应用
[E, D] = eig(R_sparse);
[~, I] = sort(diag(D), 'descend');
En = E(:, I(K+1:end)); % 噪声子空间
 
% 构建空间谱函数
angles = (-90:0.1:90);
%生成了一个包含从0度到180度,每隔0.1度一个值的数组。这个数组代表了可能的信号到达角度,MUSIC算法将使用这个数组来计算每个角度的空间功率,并找出功率峰值所对应的角度,这些角度就是信号源的估计方向。
Pmusic = zeros(size(angles));
%创建一个与 angles 数组同样大小的新数组 Pmusic,并将其所有元素初始化为0。这是准备空间谱函数计算的一步,其中 Pmusic 将存储每个角度的功率值。
for ii = 1:length(angles)
    a = exp(-1i*2*pi*d*sparse_index'*sin(deg2rad(angles(ii))));
    Pmusic(ii) = 1 / (a' * (En * En') * a);
end
%Pmusic数组将包含从0度到180度每个角度的空间功率值。在MUSIC算法中,信号源方向对应于Pmusic中的峰值。
 
% 绘制MUSIC谱
% 确保Pmusic_dB是实数
Pmusic_dB = real(10*log10(Pmusic/max(Pmusic)));
plot(angles, Pmusic_dB, 'r', 'LineWidth', 1);
%使用MATLAB的绘图功能来可视化MUSIC算法的结果,帮助用户理解信号源方向的估计情况。
% 获取当前坐标轴的极限
x_limits = xlim;
y_limits = ylim;
% 设置新的刻度间距,例如,每隔5度一个刻度
new_xticks = x_limits(1):10:x_limits(2);
new_yticks = y_limits(1):5:y_limits(2);
% 应用新的刻度到图形
xticks(new_xticks);
yticks(new_yticks);
title('MUSIC Spectrum for Sparse Array');
xlabel('Angle方位角/(degrees)');
ylabel('Spatial Power空间谱功率值/(dB)');
grid on;
%在当前的图形窗口中添加网格线,以便更清晰地看到图形中的数据点和趋势。

基于差集和几乎差集的稀疏综合算法

2 参考口径幅度渐变确定分布密度的稀疏算法

3 阵因子

阵因子是阵列天线设计中的一个重要概念,它描述了天线阵列的方向性特征。在数学上,阵因子是由阵列中各个单元天线的相对位置和相位差决定的函数,可以用来计算和预测天线阵列的辐射或接收模式。对于一个均匀分布的线性阵列,阵因子可以表示为以下公式:AF(\theta)=\sum_{n=0}^{N-1}e^{jnkd\sin(\theta)}

其中:
( AF(\theta) ) 是阵因子,
( N ) 是阵元的数量,
( d ) 是阵元之间的间距,
( \theta ) 是波束指向角,
( k ) 是波数 ( k = \frac{2\pi}{\lambda} ),
( \lambda ) 是波长。
阵因子的主要作用是通过控制各个阵元的激励电流的幅度和相位,来调整天线阵列的辐射方向图,实现波束的形成和扫描。在实际应用中,如雷达和通信系统中,阵因子的优化是非常关键的,它直接影响到系统的性能

差波束

差波束是相控阵雷达中的一个技术,用于提高测角精度。它通过将阵列分为两部分,并分别对这两部分的信号进行求和和作差,从而得到和波束和差波束。和波束是两部分信号的相加,而差波束是它们的相减。利用和波束和差波束的比值,可以在方位角或俯仰角上获得较高的测角精度。
具体来说,当目标的实际方向与雷达设置的波束指向一致时,差波束通道的输出为零,这表示测角是精确的。如果目标偏离波束指向非常小时,通过差波束和和波束通道的比值,可以得到波束指向和实际目标的角度差,从而提高测角的精度。
这种技术在雷达系统中非常重要,因为它直接影响到雷达对目标的定位能力。

切比雪夫分布

切比雪夫分布通常指的是一种概率分布,它满足切比雪夫不等式,这个不等式提供了一个关于随机变量与其数学期望之间差的界限。在阵列天线设计中,切比雪夫分布可以用来优化天线阵元的幅度分布,以达到特定的辐射模式,如降低副瓣电平或控制波束宽度。切比雪夫不等式的一般形式是:

P(|X-\mu|\geq k\sigma)\leq\frac{1}{k^{2}}

其中:
( P ) 表示概率,
( X ) 是随机变量,
( \mu ) 是( X )的数学期望(平均值),
( \sigma ) 是( X )的标准差,
( k ) 是任意正数。
这个不等式说明,随机变量( X )与其平均值( \mu )的差大于或等于( k )倍标准差的概率是有上限的,这个上限是( \frac{1}{k^2} )。在阵列天线设计中,切比雪夫分布可以帮助设计者确定天线阵元的幅度分布,以便在保持主瓣性能的同时,最小化副瓣的影响。

6 泰勒分布

泰勒分布在阵列天线设计中是一种常用的振幅分布方法,它用于降低副瓣电平并控制波束形状。泰勒分布的目标是在保持主瓣宽度的同时,使得靠近主瓣的若干副瓣电平接近一个恒定值,而远离主瓣的副瓣则逐渐衰减。这种分布方式有助于提高天线的方向性,并且由于其振幅分布较为平缓,因此在工程实现上相对容易,且误差较小。

2 矩阵束方法

矩阵束方法是一种用于信号处理的数学工具,特别是在确定系统极点和信号源定位问题中非常有用。它基于线性代数中的矩阵理论,通过构造特定的矩阵来解决广义特征值问题。
在阵列信号处理中,矩阵束方法可以用来估计从不同方向接收到的信号的到达角度(DOA)。这个方法不需要预先估计信号的相关矩阵,因此计算量相对较小,且能够提供较高的分辨率。它通过构造两个矩阵,通常被称为数据矩阵,然后求解这两个矩阵的广义特征值问题来估计信号参数。
矩阵束方法的基本步骤包括:
构造数据矩阵。
通过数据矩阵构造矩阵束。
解决矩阵束的广义特征值问题。
从得到的特征值中提取信号参数。

参考文章:【数理知识】矩阵束 Matrix Pencil

参考文章:DOA算法3:Matrix Pencil

3 迭代傅里叶方法

迭代傅里叶变换(Iterative Fourier Transform, IFT)方法是一种计算傅里叶变换的算法,它通过迭代的方式逼近信号的傅里叶变换结果。这种方法通常用于信号处理中的频谱分析,以及在计算机图形学和光学中生成全息图等应用。
IFT算法的基本思想是将信号的时间域或空间域表示转换为频域表示。在每次迭代中,算法会交替在这两个域之间进行转换,并在每次转换后应用一些约束条件来逐步改进结果。这些约束条件通常基于信号的物理特性或所需的输出特性。
例如,迭代傅里叶变换可以用于生成纯相位全息图,其中算法会在全息图平面和重建图像平面之间迭代,同时施加振幅和相位的约束条件,直到达到满意的重建质量为止。
在实际应用中,迭代傅里叶变换算法可以采用不同的形式,如快速傅里叶变换(FFT)的迭代版本,或者是基于特定优化准则的迭代算法,如误差减少算法(Error Reduction Algorithm)。

参考文章:快速傅里叶变换的迭代法代码实现

参考文章:FFT的迭代程序实现——hdu1402

参考文章:迭代傅里叶变换matlab

初始化阵列和信号参数:定义均匀线性阵列(ULA)的阵元间距、阵元数量、信号源数量、信号源方向、快拍数和信噪比。
模拟ULA信号:生成ULA接收到的信号,包括信号源和噪声。
稀疏化处理:使用迭代傅里叶变换方法逐步减少阵元,从满阵开始,每次迭代减少一定数量的阵元,直到达到所需的稀疏率。
计算协方差矩阵:对稀疏阵列接收到的信号计算协方差矩阵。
应用MUSIC算法:
计算协方差矩阵的特征值和特征向量。
分离信号子空间和噪声子空间。
构建空间谱函数并搜索峰值来估计DOA。
绘制结果:绘制MUSIC谱,显示信号源的估计方向。

%基于迭代傅里叶方法的稀疏阵列的经典music算法
% 参数设置
d = 0.5; % 阵元间距,单位为波长
N = 20; % ULA的阵元数量
K = 7; % 信号源数量
theta = [80,30, 60, 20, 50,20,10]; % 信号源方向,单位为度
P = 1000; % 快拍数
snr = 10; % 信噪比,单位为dB

% ULA信号模拟
lambda = 1; % 假设波长为1
A = exp(-1i*2*pi*d*(0:N-1)'*sin(deg2rad(theta))); % 阵列流型矩阵
S = sqrt(1/2)*(randn(K, P) + 1i*randn(K, P)); % 信号源
X = A*S; % ULA接收到的信号
X = awgn(X, snr, 'measured'); % 加入噪声

% 稀疏化处理(迭代傅里叶变换方法)
sparse_ratio = 0.5; % 定义稀疏率
num_iterations = 5; % 定义迭代次数
angle_resolution = 1; % 定义角度分辨率要求,单位为度

for iter = 1:num_iterations
    % 这里是迭代傅里叶变换的核心代码
    % 每次迭代中,根据一定的准则选择保留和移除阵元
    % 示例中暂时使用随机选择阵元的方法
    keep_indices = randperm(N, round(sparse_ratio*N));
    A_sparse = A(keep_indices, :);
    X_sparse = X(keep_indices, :);
    
    % 更新协方差矩阵
    R_sparse = X_sparse*X_sparse'/P;
    
    % 应用MUSIC算法
    [E_sparse, D_sparse] = eig(R_sparse);
    [~, I_sparse] = sort(diag(D_sparse), 'descend');
    En_sparse = E_sparse(:, I_sparse(K+1:end)); % 噪声子空间
    
    % 构建空间谱函数
    angles = (-90:0.1:90);
    Pmusic_sparse = zeros(size(angles));
    for ii = 1:length(angles)
        a_sparse = exp(-1i*2*pi*d*keep_indices'*sin(deg2rad(angles(ii))));
        Pmusic_sparse(ii) = 1 / (a_sparse' * (En_sparse * En_sparse') * a_sparse);
    end
   % Pmusic_sparse_real = real(Pmusic_sparse);

    % 检查是否满足稀疏化要求,如果满足则退出循环
    % 这里需要定义一个准则来判断是否继续迭代
    % 检查是否满足稀疏化要求,如果满足则退出循环
    % 这里使用角度分辨率作为准则
    % 使用自定义函数find_peaks找到Pmusic_sparse中的峰值对应的角度
    peak_angles = find_peaks(Pmusic_sparse, angles,K);
    angle_diffs = abs(peak_angles - theta); % 计算峰值角度与真实角度的差异
    if all(angle_diffs < angle_resolution)
        disp('满足稀疏化要求,迭代结束');
        break;
    else
        disp(['迭代次数: ', num2str(iter), ',继续迭代']);
    end

end


% 绘制MUSIC谱
Pmusic_dB_sparse = real(10*log10(Pmusic_sparse/max(Pmusic_sparse)));
plot(angles, Pmusic_dB_sparse);
title('MUSIC Spectrum for Sparse Array');
xlabel('Angle (degrees)');
ylabel('Spatial Power (dB)');
grid on;

% 自定义函数定义开始
function peak_angles = find_peaks(Pmusic, angles, K)
    % 检查Pmusic是否为实数
    if ~isreal(Pmusic)
        Pmusic = real(Pmusic); % 提取实部
    end
    [pks, locs] = findpeaks(Pmusic);
    % 确保找到的峰值数量与信号源数量相匹配
    peak_angles = angles(locs);
    if length(peak_angles) > K
        peak_angles = peak_angles(1:K); % 如果峰值过多,只保留前K个
    elseif length(peak_angles) < K
        peak_angles = [peak_angles, nan(1, K-length(peak_angles))]; % 如果峰值不足,用NaN填充
    end
end
% 自定义函数定义结束

稀疏阵列是指数组中大部分元素为0的情况,而在音乐代码中,我们可以利用这个特点,来优化代码的运行速度和空间占用。 首先我们需要定义一个二维数组来存储音乐数据,在这个数组中,我们只需要存储非0的元素,即音符的位置和时长,其他位置为0,这样可以节省大量的内存空间和运算时间。如下是一个示例代码: ```python # define a sparse array data = {(0, 3): 'C', (2, 2): 'D', (5, 1): 'E', (9, 4): 'F'} # create a 1D array with length 10 music_notes = [0] * 10 # iterate through the sparse array and update the 1D array for note in data: position, duration = note note_type = data[note] music_notes[position] = note_type * duration # play the music notes for note in music_notes: play(note) ``` 在这个代码中,我们定义了一个sparse array(稀疏数组) data,其中包含了音符在1D数组 music_notes 中的位置和时长,以及对应的音符类型。然后,我们新建一个长度为10的1D数组 music_notes,并将其中所有元素初始化为0。 之后,我们遍历稀疏数组中的每个元素,取出音符的位置和时长以及音符类型,并将这些信息用字符串的方式存储在 1D数组 music_notes 中。 最后,我们遍历 1D数组 music_notes 中的每个元素,逐个播放其对应的音符。这样,就实现了稀疏阵列在音乐代码中的应用。 总结:在音乐代码中,稀疏阵列的应用可以提高代码的效率和可读性,这便是稀疏阵列的魅力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值