python基础——matplotlib——scatter和plot方法中的maker参数(点的样式)

本文详细介绍了如何使用matplotlib库中的scatter和plot方法进行数据可视化,展示了散点图和折线图的绘制方法,包括参数设置、颜色和样式的控制,以及通过实例演示了如何利用这些方法进行数据聚类和样式定制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、scatter

scatter方法主要用来做散点图展示,而plot方法主要用来做折线图展示,也可以用于散点图的展示。两个方法的参数基本是通用的。以scatter方法为例,常用参数包括: 

plt.scatter(
    ['x', 'y', 's=None', 'c=None', 'marker=None', 'cmap=None', 'norm=None', 'vmin=None', 'vmax=None', 'alpha=None', 'linewidths=None', 'verts=<deprecated parameter>', 'edgecolors=None', '*', 'plotnonfinite=False', 'data=None', '**kwargs'],
)
  • x, y:具有相同长度的一维数据,散点的X和Y轴对应的数据。
  • s:数值型,控制点的大小。
  • c:字符串,控制点的颜色,常用的颜色字符串为b(blue,蓝色)、c(cyan,品红)、g(green,绿色)、k(black,黑色)、m(magenta,红色)、w(white,白色)、y(yellow,黄色)。
  •  marker:字符串,控制点的样式,样式列表如下表所示。

为了展示,我们按照上面17种marker类型,将数据聚类成17类,样本点的分布如下:

import matplotlib.pyplot as plt  
import numpy as np  
from sklearn.cluster import KMeans
from sklearn import datasets 
from sklearn.decomposition import PCA, FactorAnalysis

iris = datasets.load_iris() 

#降维
iris_pca = PCA(n_components=2)
iris_pca_score = iris_pca.fit_transform(iris.data)

#聚类
iris_kmeans = KMeans(n_clusters=17, n_init=15) 
iris_kmeans.fit(iris.data)

#可视化
plt.figure(figsize=[12, 9])

for cluster, marker in zip(range(17), ['.',',', 'o','v','^','<','>','8','s','p','*','+','D','d','x','|','_']):
    x_axis = iris_pca_score[:, 0][iris_kmeans.labels_ == cluster]
    y_axis = iris_pca_score[:, 1][iris_kmeans.labels_ == cluster]
    plt.scatter(x_axis, y_axis, s=60,marker=marker)
    
plt.show()

 输出:

二、plot

在plot方法的marker值中,还可设定为线条的样式’-’为实线、'--’为虚线、'-.’为点虚线、':’为点虚线。

  • norm:float型,控制点图的数据亮度,取值范围[0,1]。
  • alpha:float型,控制点图透明度,取值范围[0,1]。

另外,在plot方法中,经常会用到label参数,用来实现多个线条的标签。

<think>好的,我现在需要回答用户关于Pandas绘图中marker参数的问题。首先,我要确认用户的需求是什么。用户想查找Pandas绘图中marker参数的相关说明或参数表,也就是具体的参数列表用法。所以我的回答需要包含这些信息。 接下来,我需要回忆Pandas的plot函数。记得Pandas的绘图功能是基于Matplotlib的,所以很多参数其实是传递给Matplotlib的。特别是plot方法的kind参数如果是'scatter'或'line'时,可能会用到marker参数。不过,用户可能是在使用不同的图表类型,比如折线图或者散图,这时候marker的用法可能有所不同。 然后,我需要确认在Pandas的官方文档中,关于plot函数的参数是否有提到marker。根据用户提供的引用[4],DataFrame.plot()函数的参数包括很多,但没有直接列出marker。这可能意味着marker参数需要通过**kwargs传递给底层的Matplotlib方法,比如plt.plot()或者plt.scatter()。 接下来,我应该查找Matplotlib中关于marker的文档。根据Matplotlib的官方资料,marker参数接受不同的字符来指定标记的样式,比如圆圈'o',方块's',星号'*'等。这些标记样式应该可以直接在Pandas的plot函数中使用,通过传递marker参数。 但用户可能遇到的问题是,在使用Pandas绘图时,如何正确应用这些参数。例如,在折线图中设置marker,或者在散图中设置的形状。这时需要明确不同的图表类型可能需要不同的参数传递方式。例如,在散图中,可能需要使用scatter函数的参数,而在折线图中,则可以直接在plot方法中添加marker参数。 另外,用户提供的引用[5]中提到,图例显示有问题,可能marker的设置有关。这说明在某些情况下,即使正确设置了marker,图例可能不会自动更新,需要手动调用ax.legend()来刷新图例。这也需要在回答中提到,作为可能遇到的注意事项。 现在需要整理这些信息,给出一个结构清晰的回答。首先介绍marker参数的作用,然后列出常见的参数值,接着说明如何在Pandas的plot方法中使用,可能包括不同图表类型的示例,比如折线图图。然后需要提到注意事项,比如图例的问题参数传递的方式。 同时,要确保回答中引用了用户提供的参考资料,特别是引用[4][5],因为这些是用户提供的站内引用,需要正确标注来源。例如,在提到DataFrame.plot()参数时引用[4],在讨论图例问题时引用[5]。 最后,生成相关问题,帮助用户进一步探索相关内容。例如,关于如何自定义颜色或线条样式,如何保存图表,或者如何处理图例问题等。 在组织回答时,要使用中文,确保行内公式用$...$,独立公式用$$...$$,但在这个问题中可能不太涉及数学公式,所以需要检查是否有必要使用。当前问题不涉及数学表达式,所以可能不需要,但需要保持LaTeX语法正确。 总结步骤: 1. 介绍marker参数的作用,指出其继承自Matplotlib。 2. 列出常见的marker参数值,例如'o', 's', '*'等。 3. 提供在Pandas中使用marker的示例,如折线图图。 4. 提到注意事项,如图例问题需要手动处理。 5. 引用相关的参考资料,特别是引用[4][5]。 6. 生成相关问题,如参数列表、样式自定义、图例处理等。 现在需要验证这些信息是否正确。例如,确认在Pandas的plot方法中确实可以通过marker参数传递这些值,并且不同的图表类型是否支持。例如,在折线图(kind='line')中,marker参数有效,而在散图(kind='scatter')中,可能需要使用不同的参数,如's'来指定标记大小,但形状可能需要通过其他参数设置。或者,是否在散图中,marker参数同样适用? 查阅Matplotlibscatter文档,发现散图的标记形状是通过marker参数控制的,例如plt.scatter(x, y, marker='o')。但是在Pandas的DataFrame.plot(kind='scatter')中,可能需要传递同样的参数。需要确认Pandas是否允许在plot函数中直接传递marker参数给底层的Matplotlib函数。 假设在Pandas中,当使用plot(kind='line')时,可以通过marker参数设置标记样式,而当使用plot(kind='scatter')时,可能需要通过scatter的特定参数,如s(大小)、c(颜色)等,但标记形状可能还是通过marker参数设置。因此,在回答中需要区分不同图表类型的用法,或者统一说明可以通过**kwargs传递参数。 例如,在折线图中: df.plot(kind='line', marker='o') 在散图中: df.plot(kind='scatter', x='x_col', y='y_col', marker='s') 但需要确认是否在散图中确实支持marker参数。根据引用[3],绘制散图时通过xy参数指定数据,可能其他参数如s(大小)、c(颜色)需要设置。但marker参数可能是否有效? 可能需要进一步验证。例如,查看Pandas文档或测试代码。假设在Pandas的plot.scatter()方法中,参数包括marker,那么就可以在scatter图中使用。否则,可能需要通过其他方式设置。 根据Pandas的官方文档,DataFrame.plot.scatter()参数包括s(大小)、c(颜色)、marker(标记样式)等。因此,在散图中可以直接使用marker参数。 因此,在回答中,可以给出两种示例:折线图图中使用marker参数的示例,并说明它们如何传递参数。 同时,注意事项部分需要提到,当使用不同图表类型时,可能需要查阅对应的Matplotlib文档,因为参数可能会有所不同,但大多数情况下可以通过**kwargs传递。 最后,生成的相关问题需要围绕Pandas绘图的参数使用、常见问题解决、样式自定义等方面。</think>在Pandas绘图中,`marker`参数用于控制数据的标记样式,其用法继承自Matplotlib[^4]。以下是常见`marker`参数列表及用法说明: --- ### 常用`marker`参数列表 | 参数值 | 描述 | 示例符号 | |--------|--------------------|----------| | `'o'` | 圆形 | ● | | `'s'` | 正方形 | ■ | | `'D'` | 菱形 | ◆ | | `'*'` | 星号 | ✶ | | `'+'` | 加号 | + | | `'x'` | 叉号 | × | | `'^'` | 正三角形(向上) | ▲ | | `'v'` | 倒三角形(向下) | ▼ | | `'.'` | | · | | `'|'` | 垂直线 | ▏ | --- ### 在Pandas中的使用方法 1. **折线图**:通过`marker`直接指定标记样式 ```python df.plot(kind='line', marker='o') # 用圆形标记数据 ``` 2. **散图**:结合`x``y`参数使用 ```python df.plot(kind='scatter', x='x_col', y='y_col', marker='s') # 用正方形标记 ``` 3. **混合样式**:通过`style`参数组合线条标记 ```python df.plot(style='--o') # 虚线(--) + 圆形标记(o) ``` --- ### 注意事项 1. **图例显示问题**:若图例未正确显示标记样式,需手动调用`ax.legend()`[^5]。 2. **参数传递**:`marker`需通过`**kwargs`传递给Matplotlib底层方法(如`plt.plot()`)[^4]。 3. **更多样式**:完整参数列表需参考Matplotlib官方文档。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xia ge tou lia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值