Multi-sensor integrated navigation/positioning systems using data fusion: From analytics-based to learning-based approaches
基于数据融合的多传感器组合导航/定位系统:从基于分析到基于学习的方法
导航/定位系统已经成为许多应用的关键,如自动驾驶、物联网、无人机和智慧城市。然而,单一的导航/定位技术难以提供鲁棒、精确、无缝的解决方案。例如,全球导航卫星系统(GNSS)无法在室内满意地工作;因此,多传感器集成系统利用不同传感器的互补特性弥补了单一技术的局限性,从而提供了解决方案。本文对多传感器数据融合技术进行了深入的研究,该技术在过去的十年中已被用于组合定位/导航系统。本文将从三个方面对不同的导航/定位系统进行分类和阐述:(1)来源;(2)算法和架构;(3)应用场景,并进一步将其分为两类:(i)基于分析的融合和(ii)基于学习的融合。对于基于分析的融合,我们讨论了卡尔曼滤波器及其变体、图优化方法和集成方案。对于基于学习的融合,将在多传感器组合定位/导航系统中说明几种监督、无监督、强化学习和深度学习技术。将从多个方面详细讨论这些集成系统的设计考虑,并对其应用场景进行分类。最后讨论了未来的研究和实现方向。