室内定位最新研究论文总结-2

本文综述了室内定位的最新研究,重点关注了基于深度学习和多传感器融合的技术。从分析到学习的多传感器集成系统在导航和定位中起着关键作用,而深度邻域学习在WiFi室内定位中提高了精度。通过声学测距和惯性跟踪的智能手机技术可生成精确的室内平面图。此外,系统利用BIM和多用户网络协同应对火灾应急,实现室内导航和信息共享。结合RSSI和PDR数据的优化方法增强了COVID-19接触者追踪的准确性,而基于LTE RSSI的车辆定位技术在长隧道环境下表现良好。机器学习在可见光通信中的应用也得到探讨,特别是在VLC系统中的信道估计和安全方面。最后,研究了BLE设备的检测和跟踪,以及在无线传感器网络中基于粒子群优化的目标定位和跟踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-sensor integrated navigation/positioning systems using data fusion: From analytics-based to learning-based approaches

基于数据融合的多传感器组合导航/定位系统:从基于分析到基于学习的方法
导航/定位系统已经成为许多应用的关键,如自动驾驶、物联网、无人机和智慧城市。然而,单一的导航/定位技术难以提供鲁棒、精确、无缝的解决方案。例如,全球导航卫星系统(GNSS)无法在室内满意地工作;因此,多传感器集成系统利用不同传感器的互补特性弥补了单一技术的局限性,从而提供了解决方案。本文对多传感器数据融合技术进行了深入的研究,该技术在过去的十年中已被用于组合定位/导航系统。本文将从三个方面对不同的导航/定位系统进行分类和阐述:(1)来源;(2)算法和架构;(3)应用场景,并进一步将其分为两类:(i)基于分析的融合和(ii)基于学习的融合。对于基于分析的融合,我们讨论了卡尔曼滤波器及其变体、图优化方法和集成方案。对于基于学习的融合,将在多传感器组合定位/导航系统中说明几种监督、无监督、强化学习和深度学习技术。将从多个方面详细讨论这些集成系统的设计考虑,并对其应用场景进行分类。最后讨论了未来的研究和实现方向。

<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员石磊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值