空气动力学(笔记自留)-第四章

第四章 理想不可压平面无旋流动

如果需要详细了解流动参数的具体变化规律或分布情况,就必须采用微分形式的基本方程,结合定解条件求解。
讨论各类简化流动的数学求解、基本流动规律和主要应用。
本章主要讨论定常的理想的不可压平面无旋流动。理想无黏流动适用的欧拉方程已比N-S方程大有简化,但依然是非线性的偏微分方程组。但对于不可压无旋流动,可以引入流函数和速度势函数,通过求解函数得到流场速度分布,再联立欧拉方程的伯努利积分得到压力分布。并且,由于流函数和势函数的方程为线性的因而解具有可叠加性,可以先针对非常简单的边界条件求得基本解(基本流动),再将基本流动叠加以得到绕流实际复杂外形的流动。

4.1 引言
  1. 平面流动的研究背景
    平面流动是指流体质点在相互平行的平面上运动,并且每一平面上的流动都相同。定常情况下,流速场可以表示为:u=u(x,y),v=v(x,y),w=0。
    理论上,均匀来流垂直于无限长柱体的绕流是二维流动。可以近似为二维流动的流动具有以下特点:在某一个方向上的流动速度比其他两个方向的流动速度小得多,可以忽略。如果不加说明,垂直于流动平面方向的长度取作单位长度。
    轴对称流动是指流体质点在通过固定轴线的半平面(称为子午面)上运动,并且所有子午面上运动都相同的流动。设轴对称流动的对称轴是z轴,在柱坐标系中轴对称流的速度场表示为:`Vz=Vz(z,r),Vr=Vr(z,r),Vθ=0``。实际中也有不少轴对称流动,沿轴向运动的旋转体驱动的流场或均匀来流平行于旋转体轴线的绕流都属于轴对称运动,如炮弹、火箭的零迎角飞行等。
    对平面流动和轴对称流动这样只有两个空间变量的二维流动,无论是分析还是数值计算都比一般的三维流动简单。
  2. 无旋流动的研究背景
    根据涡管的强度守恒定理、亥姆霍兹旋涡定理(涡管强度保持定理),在流体理想无黏、正压、彻体力有势的情况下,旋涡不生不灭。当直匀气流向飞行器流来时,由于无穷远的来流无旋,不计流体黏性,绕飞行器的流动仍然是无旋的。当然实际流体总有黏性,会产生涡旋。
    对于大雷诺数流动(飞行器绕流的雷诺数一般较大),黏性起作用的地方局限于壁面附近。壁面附近黏性作用下形成了绕机翼的环量,但一旦形成之后,就可将翼型视为涡核,翼面以外的流动仍是无旋流。
4.2 理想不可压平面流动的势函数和流函数
4.2.1 无旋流动的势函数

无旋流动指涡量(及旋度)或角速度为零的流动。根据旋度公式可知无旋流动的速度满足以下关系:∂u/∂y=∂v/∂x,∂v/∂z=∂w/∂y,∂w/∂x=∂u/∂z。
根据等价定理,可由流动无旋导出:udx+vdy+wdz可表述为某函数的全微分,即dΦ=udx+vdy+wdz。这个Φ=Φ(x,y,z)就称为速度势函数,也称速度位或位函数。根据速度势函数的定义,可知梯度等于流场速度矢量,即V=▽Φ,亦即∂Φ/Φx,y,z=u,v,w。
通过死地势函数与速度的上述关系,可以根据无旋流动的速度分布求得其速度势函数,反之亦然。

4.2.2 连续方程与流函数

连续方程是流体运动所需满足的质量守恒方程的微分表达式。根据连续方程成立,可以导出某些流动存在流函数。流函数是二维或轴对称流动中表示流场的一种方法,采用一个函数表示两个流速分量,可以简化流动求解。

  1. 平面不可压流动的流函数
    平面不可压流动的连续方程为▽·V=0,即∂u/∂x+∂v/∂y=0。可以将其改写为∂u/∂x=∂(-v)/∂y。
    根据由斯托克斯公式导出的四个等价条件可知,上式成立等价于dΨ=-vdx+udy,称函数Ψ=Ψ(x,y)为流函数。其和两个速度分量的关系为:∂Ψ/∂x=-v,∂Ψ/∂y=u
  2. 流函数的性质
    流函数的概念由拉格朗日首先引进。这里以平面不可压流动为代表讨论流函数的性质。
    1 . 流函数的等值线是流线
    流函数的等值线即Ψ为常数或dΨ=0的曲线。流函数等值线的方程为-vdx+udy=0或dx/u=dy/v。这就是平面流动的流线方程,说明流函数的等值线Ψ(x,y)=C是流线,不同常数C代表不同流线。
    2 . 过同一点的流函数等值线与等势线相交。
    流动无旋时存在速度势函数,且速度为速度势函数的梯度。速度势函数的梯度方向就是等势线的法线方向,等势线上没一点的法线方向就是该点的流速方向。另外,由流函数的等值线是流线,可知其上一点的切线方向就是该点的流速方向。因此,当流动既存在势函数又存在流函数时,过同一点的流函数等值线和等势线的斜率乘积为-1.
    3 . 流函数的物理意义
    流函数是由连续方程导出的,连续方程反映质量守恒,不可压1是反映体积守恒。平面不可压流动的流函数与体积流量密切相关。
    单位时间流过弧AB的体积流量QAB为QAB=∫udy-vdx。对于平面不可压流动,存在流函数,-vdx+udy即流函数的全微分。上式可进一步表达为QAB=ΨB-ΨA。QAB就是B、A两点的流函数值之差,也说明QAB与积分路径(弧段的具体形式)无关,只与起点和终点位置有关。
    综上,对平面不可压流,流场中两点间流函数之差等于单位时间流过连接两点的任意弧段的流体的体积。或两条流线间的流量是两流线的流函数值之差。流函数的等值线是流线,其上每点的切线方向代表了该点的流速方向。如果按照等差值华出流场的流函数等值线,从等值线的疏密分布还可看出速度大小。这是因为两条流线的流函数值之差代表在其间流动的流量,而任意两条相邻流线间要流过相等的流量,流线密的地方(流管窄)的地方流速快。
4.3 不可压平面无旋流动求解概述
4.3.1 不可压平面无旋流的基本方程

无旋流动存在势函数Φ,势函数的梯度即速度,即V=▽Φ。根据不可压流的连续方程,V·▽=0。于是有▽·(▽Φ)=▽^2Φ=0。可见不可压无旋流的势函数满足拉普拉斯方程。对平面不可压无旋流动,势函数满足的拉普拉斯方程为∂^2Φ/∂x^2+∂^2Φ/∂y^2=0
对于平面不可压流,存在流函数Ψ,且有∂Ψ/∂x=-v,∂Ψ/∂y=u。
当流动无旋时,有∂v/∂x-∂u/∂y=0。
于是得:∂^2Ψ/∂x^2+∂^2Ψ/∂y^2=0▽^2Ψ=0
也就是说,不可压平面无旋流动的流函数也满足拉普拉斯方程。
此处对不可压平面无旋流动,应用连续方程和无旋条件导出速度势函数和流函数的方程,均可作为这类运动的控制方程之一。求解出势函数或流函数方程中的任意一个都能得到流速场,但还不能解决动力学问题。若需要的到流场的压力分布,还需要进一步应用定常不可压无旋条件下欧拉方程的伯努利积分。

4.3.2 不可压平面无旋流七届的物理问题叙述和数学问题提法
  1. 物理问题叙述
    本章讨论的是平面物体的绕流。平面物体周线为L,L外的区域D为流动区域。来流参数P∞、ρ∞和V∞为给定值。要解决的问题就是在已知自由来流条件和物体形状高的情况下,求得物体周围流场的速度分布、压力分布等。假定流动视为不可压平面无旋流动。下面分别给出速度势函数和流函数问题的数学提法。
  2. 速度势函数Φ(x,y)问题的数学提法
    控制方程为:∂^2Φ/∂x^2+∂^2Φ/∂y^2=0,(x,y)∈D
    定解条件如下:
    1 . 来流是二维均匀流,即∂Φ/∂x|∞=u∞,∂Φ/∂y|∞=v∞。
    2 . 物面周线L上满足无渗透条件,即流速与物面相切,法向速度为零:∂Φ/∂n|L=Vn=0。
    3 . 绕封闭物面周线的二维流场是双连通域,因此还需给出绕周线上的环量:∮V·dl=τ或∮dΦ=τ。
    以上定解条件适用于有环量的无旋流动。
    绕壁面的环量是对黏性作用的 抽象简化,它是无旋流场的求解无法确定的,必须作为定解条件给出。
  3. 不可压平面无旋流的流函数Ψ(x,y)问题的数学提法
    控制方程为∂^2Ψ/∂x^2+∂^2Ψ/∂y^2=0,(x,y)∈D
    定解条件如下:
    1 . 来流是二维均匀流,即∂Ψ/∂x|∞=u∞,∂Ψ/∂y|∞=-v∞。
    2 . 物面周线L上满足无渗透条件,即物面是流线,物面上流函数是常数:Ψ|L=const。
    3 . 绕封闭物面周线的环量条件:∮V·dl=τ或∮(∂Ψdx/∂y-∂Ψdy/∂x)=τ。
    对于不可压平面无旋流动,求解速度势函数或流函数中任意一个均可得出流速场,可根据具体情况选用。两种方法的主要区别是:用流函数求解流动时,物面上用的是第一类边界条件,而用速度势函数求解物面上是第二类边界条件当用基本解叠加或数值方法求解时,第一类边界条件问题比较容易处理。另外,求得流函数后能直接得到流线谱,可以较直观地来描述流动。
4.3.3 方程求解方法

上述不可压平面无旋流动的速度势函数或流函数的定解问题均为拉普拉斯边值问题,其解是存在且唯一的。求解的方法有解析法、复变函数方法、基本解叠加法、数值求解(偏微分方程离散为差分方程后求数值解)、徒手绘制流线或等位线网图法(用于简单边界,如管道内部的流动)。本章主要采用基本解叠加法。

  1. 解析法
    解析法是想找到一个满足方程和边界条件的解析形式的函数。可以根据情况采用分离变数法、换变数法。还可以采用积分方程法,这种方法视边界条件的具体特点不同而用到傅氏级勒让德函数或贝塞尔函数。不论哪种方法都很难得到解析解。
  2. 复变函数方法
    3由于不可压平面无旋流动的势函数Φ和流函数Ψ都满足拉普拉斯方程,都是调和函数(满足拉普拉斯方程的函数称为调和函数),它们之间又存在以下关系:u=∂Φ/∂x=∂Ψ/∂y,u=∂Φ/∂y=-∂Ψ/∂x。因此Φ和Ψ是一对共轭调和函数,可以用复变函数中的解析函数表示。以速度势函数为实部、流函数为虚部组成的复函数称为复势:W(z)=Φ(x,y)+iΨ(x,y)。复势是解析函数。
    采用复变函数方法求解不可压平面无旋流动问题,就是要找到满足具体流动边界条件的解析函数来作为流动的复势。因为函数解析就保证了其实部和虚部均满足拉普拉斯方程且共轭。采用复变函数方法时,常需要应用解析变换(保角变换)法。因为简单边界绕流的复试容易求得,所以利用解析变换将复杂边界变换为简单边界,求得满足简单边界条件绕流的复势后再根据变换关系返回得到复杂边界绕流的复势。
  3. 基本叠加法
    有一些非常简单的调和函数,称为拉普拉斯方程的基本解。
    由于它们能够满足一些简单流动的边界条件因而能够作为简单的不可压平面无旋流动的势函数和流函数。又因为拉普拉斯方程是线性的,因而任意调和函数的线性组合也满足拉普拉斯方程,如果线性组合又能满足给定的速度势边界条件,那么它就是给定速度势边值问题的唯一解。同样,任意调和函数的线性组合也满足拉普拉斯方程,如果线性组合又能满足流函数的边界条件,那么它就是流函数边值问题的唯一解。
    这样用若干个基本解线性叠加在一起去满足具体绕流边界条件的做法,就是基本解叠加法。从物理上看,就是用若干个简单的不可压平面无旋流动组合起来构成实际的比较复杂的流动,当然还是不可压平面无旋流动。
    基本解叠加法也称为奇点法。这是由于这些基本解在数学上常常是奇性的。
    采用基本解叠加法求解流动时,存在所谓正问题或反问题求解法。正问题指已知物体形状,求速度势函数、流函数。思路是,根据流动图画的分析,选择合适的基本解组合,使得满足给定的边界条件。反问题指已知速度势和流函数,讨论是什么样的物体与之对应。反问题的求解是正问题的基础。
4.4 几种简单的不可压平面无旋流动(基本解)

这些不可压平面无旋流动的速度势函数和流函数都是拉普拉斯方程的基本解。

4.4.1 直匀流

直匀流是一种速度大小与方向都不变的最简单的平行流动。
假设速度V与x轴交成α角,则u=|V|cosα=a,v=|V|sinα=b。
显然直匀流场是无旋的、不可压的。根据速度势函数φ(x,y)、流函数Ψ(x,y)的定义,积分得Φ=ax+by,Ψ=ay-bx。
令积分常数为零,因为这不会影响到实际需要的速度分布。
常用的直匀流特例是:与x轴平行,从左面远方传来的直匀流V∞,其速度势函数和流函数分别为Φ=V∞x,Ψ=V∞y。

4.4.2 点源与点汇

平面流动中,点源可视为平面上的一点,流体不断从此点溢出,并沿径向均匀地向各方向流动。因此,流线应为从该点源处发出的各个辐射线。反过来,流体沿径向均匀地从各个方向流入一点的流动称为点汇、
对这种流动,将坐标原点置于点源上,采用极坐标系比较方便。由于流动的对称性,只有径向速度Vr,而无周向速度Vθ,并且各个θ方向的径向速度Vr大小相等,即有Vr=Vr®,Vθ=0。

  1. 点源流量、速度
    设点源单位时间喷出的流体的体积流量为Q。对不可压流,根据体积守恒,可知从包围点源的任意一条封闭曲线流出的流量均为Q。常数Q称为点源强度,点源的Q为正值,点汇的Q为负值。
    根据点源强度可确定点源流场的速度分布。以点源(坐标原点)为圆心,半径为r作圆,则通过该圆的流量为Q=2πrVr。从而有Vr=Q/2πsqrt(x^2+y^2),而已知点源的周向速度为Vθ=0。
  2. 点源的速度势函数与流函数
    上面已假设点源流动是不可压的,从流动特点能直接判断流动的无旋性,也可以根据上述速度函数验证流动的无旋和不可压。采用极坐标系下的旋度公式可得:Ωz=0。采用极坐标下的散度公式可得▽·V=0。
    根据上述极坐标系下的无旋流动和不可压表达式,也可以导出极坐标系下的速度势函数和流函数与速度的关系:∂Φ/∂r=Vr,∂Φ/r∂θ=Vθ,∂Ψ/∂r=-Vθ,∂Ψ/r∂θ=Vr。代入上式积分后可得Φ=QInr/2π+C,取常数C为0,则Φ=QInr/2π=QInsqrt(x^2+y^2)/2π。可见等势线为一组同心圆。
    类似,有Ψ=Qθ/2πΨ=Q(arctany/x+nπ)/2π,n=0,1,2
    上面是考虑到arctan(y/x)的值域为(-π/2,π/2),若去θ∈[0,2π),则根据具体情况加上常数。y/x→±∞时,θ取π/2或3π/2。流函数的等值线(即流线)是从原点发出的辐射先前,流线与等势线正交。
  3. 不在原点的点源
    若点源的位置不在原点而在A(ξ,η)点,流动图画不变。但是速度和速度势函数、流函数的表达形式不同。此时最好用直角坐标。
    从点源向流场某点P(x,y)做矢径r1,p点处速度沿r1该方向,为V=Q/2πr1·r1/r1。
    上式中,Q为点源强度,r1为p点距离点源的距离。
    r1=(x-ξ)i+(y-η)j,r1=sqrt((x-ξ)^2+(y-η)^2)
    速度势函数和流函数分别为Φ=QInr1/2π,Ψ=Qθ1/2π。
    θ1为r1与x轴正向的夹角。此处的r1、θ1不是极坐标。根据其具体含义,可以得到直角坐标系下的速度势函数和流函数为Φ=Q/2π·Insqrt((x-ξ)^2+(y-η)^2)Ψ=Q/2π(arctan(y-η)/(x-ξ)+nπ),n=0,1,2
    流速分量分别为u=Q/2π·(x-ξ)/(x-ξ)^2+(y-η)^2v=Q/2π·(y-η)/(x-ξ)^2+(y-η)^2
4.4.3 偶极子
  1. 点源与点汇叠加的流场
    考察等强度的一个点源和一个点汇形成的流动。令Q>0,点汇强度为-Q,置于坐标原点;点源强度为Q,置于(-h,0)处。
    流场中任意一点P(r,θ),r为点汇至该点的矢径r的长度,θ为r与x轴正向的夹角;记自点源至P点的矢径为r1,r1与x轴正向的夹角θ1。点源和点汇在P点的速度势函数分别为Φ1=Q/2π·Inr1,Φ2=-Q/2π·Inr。流函数分别为Ψ=Qθ1/2π,Ψ=-Qθ/2π。
    应用叠加原理,得到点源和点汇叠加流动的速度势函数为Φ=Φ1+Φ2=Q/2π·(Inr1-Inr)=Q/2π[Insqrt((x+h)^2+y^2)-Insqrt(x^2+y^2)],流函数为Ψ=Ψ1+Ψ2=Q/2π(θ1-θ2)=Q/2π(arctany/x+h-arctany/x+nπ)。式中,整数n需要根据θ1和θ2的具体关系取值。
  2. 偶极子的速度势函数与流函数
    考虑极限情况。令点源和点汇无限接近,即h→0,但同时令其强度无限增大,即Q→∞,使二者乘积保持不变,即Qh/(2π)=M为常数。这样得到的复合流动称为偶极子流动,M称为偶极子的偶极矩。偶极子的轴线是构成其点源和点汇的连线,规定由汇指向源的方向为偶极子的正向。
    对点源与点汇叠加流动的速度势函数取h→0时的极限,即可得到偶极子流动的速度势函数。当h→0时,有Φ=lim(h→0)Qh/2π·∂(Insqrt(x^2+y^2)/∂x)
    又如果Q→∞,且Qh/2π=M保持不变,可以进一步得到Φ=M·∂(Insqrt(x^2+y^2)/∂x)=M·x/(x^2+y^2)=Mcosθ/r
    类似地,在h→0,Q→∞,且Qh/(2π)=M保持不变的条件下,对上式取极限可得Ψ=-M·y/(x^2+y^2)=-Msinθ/r
  3. 偶极子流动的流线、等势线和流速
    偶极子流动的流函数等值线或流线方程为y/(x^2+y^2)=C1,可改写为x^2+(y-c1')^2=c1'^2
    可见流线是一族圆,圆心都在y轴上,且圆周都过坐标原点O。等势线方程为x/(x^2+y^2)=C2或改写为(x-c2')^2+y^2=c2'^2。等势线是一族圆心在x轴上的圆,圆周也均过原点。
    偶极矩M>0(源在左,汇在右)时,流线上标明了流速的方向,流动从位于左侧的原流出,顺时针沿着不同大小的圆周流入位于右侧的汇。可见在偶极子轴线上流动的方向指向偶极子的正向。
    对速度势函数或流函数求偏导,即得偶极子流动的速度分量。x,y方向的速度分量分别为u=M·(y^2-x^2)/(x^2+y^2)^2-M·2xy/(x^2+y^2)^2
4.4.4 点涡

无穷长直涡线的“诱导”速度场为V=τ0/2πh。式中,τ0为涡线的环量,速度方向根据右手定则确定。这是在垂直涡线的平面上,以涡线与平面焦点为圆心的圆周运动,与涡线垂直的各个平行平面上流动相同。一个平面上的流场就是“点涡”流场,各流体质点都以该“点涡”为中心作圆周运动。

  1. 点涡的速度、速度势函数与流函数
    将·点涡放在坐标原点O上,则点涡流场只有周向流速Vθ,且Vθ与离圆心O的距离成反比,即Vr=0Vθ=τ0/2πr
    式中,常数τ0称为点涡强度,规定点涡的旋转方向(或者说“诱导”流场的周向速度方向)逆时针对应的τ0为正。
    根据点涡流场的速度分布容易推知点涡流动是不可压的,除点涡所在点之外,流动也是无旋的。因此点涡流动存在速度势函数和流函数。采用极坐标系下的速度势、流函数和速度分量的关系,容易确定点涡流动的速度势函数Φ和流函数Ψ,分别为Φ=τ0/2π·θ,ψ=-τ0/2π·Inr。
    可见流线是以原点为圆心的圆族,等势线是从原点发出的射线族。
    若点涡不在原点而在(ξ,θ),则其速度势函数为Φ=τ0/2π·arctan(y-η/x-ξ+nπ),n=0,1,2
    流函数为Ψ=-τ0/2π·Insqrt((x-ξ)^2+(y-η)^2)
    x、y向的速度分量分别为u=-τ0/2π·(y-η)/(x-ξ)^2+(y-η)^2v=τ0/2π·(x-ξ))/(x-ξ)^2+(y-η)^2
  2. 点涡流场中绕封闭围线的环量
    因为点涡流场中除去点涡所在点外时无旋的,因此点涡又常称为势涡或位涡。于是根据环量和涡通量之间的关系可知:在点涡流场中,对任意形状的围线,只要围线未包围点涡,则沿其的速度环量等于零;而当围线将点涡包围在内,沿其的环量值则和沿包围点涡的任意一圆周的环量相等。
    可见绕包围点涡的任意一条封闭曲线的环量都等于点涡的强度τ0。所以τ0也称为点涡的环量。
4.4.5 基本解的小结
流动势函数Φ流函数Ψ速度
直匀流ax+byay-bxu=a,v=b
点源、点汇Q/2π·InrQ/2π·θVr=Q/2πr,Vθ=0,u=Q/2π·x/(x^2+y^2),v=Q/2π·y/(x^2+y^2)
点涡τ0/2π·θ-τ0/2π·InrVr=0,Vθ=τ0/2πr,u=-τ0/2π·y/(x^2+y^2),v=τ0/2π·x/(x^2+y^2)
偶极子M·cosθ/r-M·sinθ/ru=M·(y^2-x^2)/(x^2+y^2)^2v=-M·2xy/(x^2+y^2)^2
4.5 简单的流动叠加举例

将上述不可压平面无旋流动基本解叠加起来,或者说将几种简单流动组合起来,就能得到一些有实际意义的较为复杂的流动。

4.5.1 圆柱的无环量绕流(直匀流+偶极子)

在平行于x轴以速度V∞由左向右流去的直匀流中,放一个强度为M(M>0)指向负x轴的偶极子。将坐标原点置于偶极子所在位置。直匀流的速度势函数和流函数分别为Φ1=V∞x,Ψ1=V∞y
偶极子流动的速度势函数与流函数分别为Φ2=M·cosθ/r=M·x/r^2,Ψ2=-M·sinθ/r=-M·y/r^2
则叠加流动的速度势函数为Φ=V∞x+M·x/r^2=(V∞r+M/r)cosθ,流函数为Ψ=V∞y-M·y/r^2=(V∞r-M/r)sinθ
绘制流函数等值线即可得到叠加后的流动图画,可见流动是上下对称也是前后对称的。

  1. 叠加流场的驻点及过驻点的流线
    首先寻找流场中的驻点,即流速为零的点。极坐标下的速度分量为Vr=(V∞-M/r^2)cosθ,Vθ=-(V∞+M/r^2)sinθ
    令Vr=0,Vθ=0,得r=sqrt(M/V∞),θ=0或θ=π
    可见流动有两个驻点,位于x轴上,且关于y轴对称。
    接下来分析过驻点的流线。将驻点坐标代入流函数表达式,得到驻点处的流函数Ψ=0。这说明·过驻点的流线就是Ψ=0的流线,即V∞y-M·y.r^2=0,则y=0或r=sqrt(M/V∞)
    可见该流线的一部分是x轴,另一部分是半径为a=sqrt(M/V∞)的圆周。流动从x=-∞沿x轴流到前驻点B后分为两支,沿着半径为a的圆周向后流动到后驻点A后汇合,再沿x轴流向x=+∞。
  2. 叠加流动代表绕流物体的形状
    流线是气流不可跨越的线。在该叠加流动的全部流线谱中,过驻点的圆周流线比较特殊。它是封闭的,像一道围墙一样,把流场分为两部分。外部是直匀流绕此围墙的流动,内部是偶极子形成的在此围墙限制之内的流动。 一个物体放在流体中,其边界线也是流体不可跨越的线,理想无黏流绕流物体,在物面上流动与物面相切,物面可以视为流面。因此,这里可以把圆周流线等效为圆柱的表面,把圆周流线外部的流动看成在直匀流中放了一个圆柱后形成的流场。
    这说明速度为V∞的直匀流和强度为M的偶极子叠加的流动代表的是直匀流V∞绕流半径为a=sqrt(M/V∞)的圆柱的流动。反之,若需要通过基本解叠加来形成速度为V∞的直匀流流过半径为a的静止圆柱的流场,则可以通过直匀流V∞和偶极子的叠加实现,偶极子的强度为M=a^2V∞。
    直匀流的速度和偶极子的强度都是由流动的边界条件(圆柱半径、自由流速度)确定的。已知绕流的物体形状,通过基本解叠加法求解是需确定Φ(x,y)=∑CiΦi中的Φi和待定系数Ci的。这里选定了直匀流和偶极子,它们的速度势函数为Φi,而直匀流的速度和偶极子的强度就是有边界条件确定的待定系数Ci.
  3. 圆柱无环量绕流的速度势函数、流函数与速度分布
    直匀流和偶极子叠加的流动为圆柱绕流,由于直匀流和偶极子流动环量均为零,所以该叠加流动是无环量的圆柱绕流。将偶极子强度采用圆柱半径表达后,流动的速度势函数和流函数分别为:
    Φ=V∞(r+a^2/r)cosθΨ=V∞(r-a^2/r)sinθ
    直角坐标下的速度分量为:
    u=V∞(1-a^2/r^2·cos2θ)v=-V∞·a^2/r^2·sin2θ
    极坐标的速度分量为Vr=V∞cosθ(1-a^2/r^2)Vθ=-V∞sinθ(1+a^2/r^2)
    在圆柱表面,r=a,则有Vr,w=0,Vθ,w=-2V∞sinθ。
    即法向速度为零,切向速度沿圆柱表面以正弦规律分布。这是符合理想无黏流的物面运动学边界条件的:法向速度为零,可以有切向速度。
  4. 圆柱表面压力分布
    由直匀流和偶极子叠加形成的晕住无环量绕流是不可压无旋流动。根据伯努利方程:p+ρV^2/2=C(全场)=p∞+ρV^2/2,可得流场压强系数为Cp=1-V^2/V∞^2。壁面上,有Vw^2=Vr,w^2+Vθ,w^2=4V∞^2sin^2θ。壁面压强系数为Cp,w=1-4sin^2θ
    壁面压强系数的分布,上(θ=π~0)(θ=π~2π)部分对称。前驻点处的Cp=1.0。从驻点后流,圆柱表面流速逐渐增大,在θ=5π/6或θ=7π/6处流速增大到和来流一样大,Cp=0。以后继续加速,在θ=π/2或θ=3π/2处达到最大速度,其值为来流速度的两倍,压强最低,Cp=-3.0。过了最大速度后气流减速,在θ=π/3或θ=11π/6处流速为V∞,在θ=0或θ=2π处流速为零,该点称为后驻点。
    从流动图画和压强系数分布徒都可以看出,流动不仅上下是对称的,前后也是对称的,所以圆柱表面所受的流体的压力合力为零。即圆柱既不受升力,也不受阻力。若不考虑流体的黏性,不仅像对圆柱这样的对称物体没有阻力,任意一个封闭物体在无界理想不可压流体中作匀速直线运动时,其受到阻力(即流动方向的合力)都是零。这就是著名的达朗贝尔佯谬。这一结论与实情不符,也说明了理想无黏流体理论不能用于计算阻力,因为阻力(摩擦或压差阻力都是直接或间接由黏性产生的)。当然,升力的产生最初也与黏性有关,但将黏性的作用抽象为生成了附着于物面的环量后,就可以采用理想无黏流体理论求解升力问题了。
4.5.2 圆柱的有环量绕流

对于圆柱无环量绕流的分析表明,圆柱在理想无黏流体中做匀速直线运动时,作用在圆柱上的合力为零。不过如果圆柱同时还能旋转,带动流体形成了环流,则会产生升力。可以应用旋转圆柱体产生的力推动船只航行,但因为效率不高,未得到实际应用。
圆柱旋转产生的流动可以抽象简化为点涡流动。点涡流动是绕以点涡为圆心的同心圆周运动。“直匀流+偶极子”形成的流动在圆周上是沿着圆周切向的运动,如再加上圆心处点涡产生的流动,在圆周上仍然是沿圆周切向,能够满足圆柱绕流的运动学边界条件。因此,可用“直匀流+偶极子+点涡”代表有环量的圆柱绕流,即旋转圆柱的绕流。圆柱旋转产生了流体绕圆周的环量,环量用点涡的强度(环量)表示。也即“速度势或流函数问题数学提法”中提出的关于环量的定解条件。

  1. 圆柱有环量绕流的速度势函数、流函数与速度分布
    圆柱顺时针旋转时产生升力,所以下面以圆柱顺时针旋转,即环量为负的情况为例,来讨论圆柱有环量的绕流的流场。模拟圆柱旋转的点涡也应是顺时针旋转的,其点涡强度为-τ(τ>0),从而“直匀流+偶极子+点涡”所形成流场的速度势函数为Φ=V∞(r+a^2/r)cosθ-τθ/2π。流函数为Ψ=V∞(r-a^2/r)sinθ+τ/2π·Inr+C。式中C为常数。
    在圆柱表面,即当r=a时,有Ψ=τ/2π·Ina+C=const。式中可取常数为C=-τIna/2π,这样圆柱面上有Ψ=0.可见r=a仍是流线,不过x轴不再是流线。
    极坐标系下速度分量为Vr=∂Φ/∂r=V∞(1-a^2/r^2)cosθVθ=∂Φ/r∂θ=-V∞(1+a^2/r^2)sinθ-τ/2πr
    在r=a圆周(即圆柱壁面)上,有Vr=0Vθ=-2V∞sinθ-τ/2πa
    壁面上法向速度为零,但有切向速度,即有沿壁面的滑移。
  2. 驻点位置
    无环量圆柱绕流上叠加点涡后,流动不再上下对称。驻点也不在θ=π和θ=0处,驻点位置可根据圆柱表面上切向速度为零确定。由Vθ=-2V∞sinθ-τ/2πasinθ0=-τ/4πV∞a<0
    可见驻点必在第三或第四象限内,前后驻点对y轴而言是对称的。驻点的具体位置取决于环量强度τ、偶极子强度M=a^2V∞和来流速度V∞之间的大小对比关系。当偶极子强度和来流速度一定时,环量τ越大,驻点越往下移。当τ取不同值时,可能会出现四种流动图画。
    1 . τ=0
    圆柱无环量绕流,前后驻点均在x轴上。
    2 . τ<4πV∞a
    此时|sinθ0|<1,在圆柱面上有两个驻点,分别称为前后驻点。
    3 . τ=4πV∞a
    此时sinθ0=-1,在圆柱面上的两个驻点重合,位于θ0=-π/2处。
    4 . τ>4πV∞a
    这种情况下sinθ0=-τ/4πV∞a无解,也就是说圆柱表面上不再有速度为零的点。此时驻点已脱离圆柱面进入流场中,这样的驻点称为自由驻点。需要进一步根据全流场的速度分布式确定驻点位置。由于速度分布关于y轴对称,自由驻点将在圆柱以下的负y轴上。
  3. 圆柱升力
    知道流场的流速分布,可以根据速度、压强关系求得流场压强分布,再对壁面压强分布积分就能求得圆柱受力。
    直匀流和偶极子均为无旋的,点涡流场在除去涡所在点外也是无旋的。三者叠加形成到的有环量圆柱绕流,沿任意一条包围圆周的曲线的环量和沿圆柱壁面的环量相等,均为点涡的强度,壁面以外的全流场依旧是无旋的。所以确定流场压强分布时可采用适用于全流场的伯努利方程:p+ρV^2/2=C(全场)=p∞+ρV∞^2/2
    在圆柱r=a表面上,只有沿圆周切向的速度Vθ,且其大小关于y轴对称。代入上面的伯努利方程后,得到壁面压强分布为p=C-ρτ^2/8π^2a^2-ρV∞τ/πa·sinθ-2ρV∞^2sin^2θ.
    可见压强分布关于y轴对称,因而在x方向合力为零,无阻力。由于圆柱上半部分sinθ>0,下半部分sinθ<0,因此圆柱面下半部分所受压力大于上半部分,在y方向有合力,为向上的升力。
    无环量时,上半圆上的压强分布和下半圆上的压强分布对称,合力为零。有环量时,上半圆上的压强小于来流压强,表现为负压,下半圆上的压强大于来流压强,表现为正压,两部分均对升力有贡献,但上半部分的负压作用远大于下半部分的正压作用,因此也常说升力的来源主要靠上半圆上的吸力。其实圆柱上下部分速度相对来流速度增大和减小的数值是对称的,但由于速度变化对应的压强变化是速度值的平方的变化,因此上下部分压强的差别远大于速度的差别。
    圆柱表面受到的合力为F=-∮pwnds
    式中,n为指向圆柱外法向的单位矢量。前面已知x方向合力Fx=0。y方向合力为Fy=ρV∞τ
    压强分布的积分结果表明,作用在圆柱上的阻力为零,升力的大小与环量τ、来流速度V∞和密度ρ成正比;方向是将来流速度V∞方向逆环流方向旋转π/2方向得到的,这一结果使用矢量形式表示为F=ρV∞×τ
    式中,矢量τ的方向根据环量以右手定则确定,xy平面上逆时针方向的环量对应矢量沿正z方向。这里的圆柱绕流量为顺时针方向,因此τ=-τk,合力F沿正y方向。
  4. 儒科夫斯基定理
    其实,对任意二维物体的不脱体绕流,均有F=ρV∞×τ这个结论。该定理表明有环量才有升力,且升力正比于环量。
    升力的存在是因为表面压力分布的不均衡,表面压力分布的不均衡与速度分布的不均衡相关,速度分布的不均衡起因于圆柱的旋转。环量是为研究方便定义的一个物理量,能够表达速度分布的不均衡,因而也间接表达了压力分布的不均衡。不均衡压力分布积分和合效果为升力,不均衡速度分布积分的效果为环量。儒科夫斯基定理可以说是一种表达压力分布合效果的替代方法。
    儒科夫斯基定理在绕流附体是都成立,不受物体具体形状的影响。对于圆柱体绕流,环量是由圆柱体旋转而产生的。有时,运动物体并不旋转(如翼型),但特殊形状使得其绕流也存在绕物体的环量,环量大小和物体形状、自由流速度有关。
4.6 低速翼型绕流

记忆是飞机产生升力的主要部件。一般飞机都有对称面,如果平行于对称面在机翼展向任意位置切一刀,切下来的机翼剖面称为翼剖面或翼型。翼型是飞机产生升力的基本单元,翼型气动力性能是设计机翼的主要参数。大展弦比直机翼中部的流动可以简化为无限长直机翼的二维平面流动,即平面翼型绕流。

4.6.1 低速翼型的绕流特点
  1. 低速翼型的绕流图画
    低速飞机翼型一般是圆头尖尾的,上下表面由一定形状的曲线连成。翼型的最前端点称为前缘点,最后端点称为称为后缘点前后缘点的连线称为翼型的几何弦,前后缘点的距离称为弦长,一般用c表示。无穷远来流和翼弦的夹角称为迎角,也称为攻角α。
    总体流动特点如下:
    1 . 整个绕翼型的流动是无分离的附着流动。
    2 . 驻点位于下翼面距前缘点不远处,流经驻点的流线分成两部分,一部分从驻点起绕过前缘点经上翼面顺壁面流向后缘,另一部分从驻点起经下翼面顺壁面流向后缘,在后缘处流动平滑地汇合后向下游流去。
    3 . 绕过前缘从上翼面走的气流,速度从前驻点的零值很快加速到最大值,之后直到后缘气流完全是减速的,起初减速地特别厉害,之后缓慢。而沿下翼面走的气流从驻点起一直到后缘,基本上是加速的,起初加速很快,之后加速不明显。驻点处压强最大,到最大速度点处压强最小,即上翼面上压强系数约为-1.5的点。上翼面最低压强点后压强逐渐增大,下翼面驻点后压强逐渐减小。上下翼面都是在起始部分压强变化明显,之后缓慢。
    4 . 气流到后缘处,从上下翼面平顺流出,后缘处压强系数为一接近零的微小正值。
    5 . 随着迎角增大,驻点(下翼面上)逐渐后移,上翼面的最大速度点则更想前缘靠近。且迎角增大,最大速度值越大,上下翼面的压差约大。
  2. 翼型升力产生的原因
    从上述对翼型的流动图画和翼型的压强分布的分析可知,翼型上下翼面气流速度分布不均匀,上翼面流速快,下翼面流速慢,导致上翼面压强低,下翼面压强高,气流对翼型作用的总合效果是产生了升力。
    分析原因:
    1 . 因为翼型的特殊形状(尤其是存在尖尾缘),以及来流与翼弦成一定夹角(有正迎角),使得流体流经翼型时经过的集合路径不对称,这种不对称改变了翼型上下表面的速度与压力分布,使得在大部分区域,上表面的压力小于下表面的压力,导致净压力的产生。
    2 . 上下表面速度不对称(上快下慢),就相当于绕翼型有一个顺时针环量。可以应用儒科夫斯基定理,通过环量方便地计算升力。如果这样能够确定环量就不需要得到翼型表面详细的压力分布并积分了。
4.6.2 翼型绕流的变换
  1. 不可压平面无旋流动的复变函数表达
    前面对不可压平面函数引入复势函数W(z)=Φ+iΨ。W(z)是一解析变换函数,统一表达速度势函数Φ(x,y)和流函数Ψ(x,y)这一对共轭调和函数。
    另外,还可用一个复变函数V(z)来统一表达流动速度的两个分量,称为副速度:V(z)=u(x,y)+i(x,y)。复速度和复势的导数共轭,即dW/dz=u(x,y)-i(x,y)
    上式其实就是速度势函数、流函数和两个速度分量关系的反映。
    不可压平面无旋流动的速度势函数和流函数问题的数学提法,它们的控制方程都是拉普拉斯方程,即∂^2Φ/∂x^2+∂^2Φ/∂y^2=0∂^2Ψ/∂x^2+∂^2Ψ/∂y^2=0
    边界条件包括物面上速度与物面相切(或物面上流函数为常数)、无穷远处速度条件、绕物面的环量条件。而采用复变函数表达不可压平面无旋流动,从控制方程看,就是要求流动的复势为解析函数;边界条件则是要求在边界上复速度的实部和虚部满足相应的条件,另外,同样要满足环量条件(可能由复速度或复势本身表达)。
  2. 翼型绕流的变换
    以解析函数作为不可压平面无旋流动的复势后,就可以应用复变函数中的解析变换(又称保角变换或保角映射)方法,实现两个不同流动之间的变换。通常是将绕复杂外形的流动变换为绕简单外形的流动。同为不可压平面无旋流动的两流动满足相同的控制方程,即其速度势函数和流函数均满足拉普拉斯方程,采用复势统一表达后,就是要求两流动的复势均为解析函数。那么两个流动变换的关键是进行边界的变换。
    边界的变换,就是将z平面上翼型的周线C映射为ζ平面上的圆K,周线C外区域映射为圆K外区域。通过函数ζ=f(z)实现这样的映射:z→ζ。若已知简单的圆柱绕流的复势为解析函数W*(ζ),代入ζ=f(z)后,复势可以改写为关于z的函数:W*(ζ)=W*[f(z)]=W(z)
    如果要求W(z)作为翼型绕流的复势,它需要满足翼型绕流的控制方程,满足W(z)是解析函数,另外要求W(z)能满足翼型绕流的边界条件,即物面处速度与物面相切(或流函数为常值)条件、无穷远来流条件和环量条件。
    具体变换方法如下:
    首先要确定将翼型周线映射为圆的函数。若不好确定,可以从其反函数出发。设定相关条件后,这样的解析函数是唯一的。
    关于物面边界条件,可通过要求W(z)的虚部(即流函数)在翼型周线C上为常数来实现。
    环量条件则要求圆柱的环量和翼型绕流的环量相等。设绕翼型有一顺时针环量-τ(τ>0),则对应的圆柱绕流环量亦为-τ。
  3. 翼型绕流的复势和翼型升力
    上面讨论了流动变换对边界条件的要求,下面根据有环量圆柱绕流的复势确定有环量翼型绕流的复势。这里翼型绕流的自由流速度为V∞、迎角为α、环量为-τ,对应要求圆柱绕流自由流速度为kV∞、迎角保持为α,环量亦为-τ。
    相应的圆柱绕流的速度势函数和流函数分别为:Φ=kV∞(r+a^2/r)cos(θ-α)-τ/2π·(θ-α)Ψ=kV∞(r-a^2/r)sin(θ-α)-τ/2π·In(r/a)
    再应用复数的指数和三教表达式:ζ=re^iθ=r(cosθ+isinθ)
    可得到圆柱绕流的复势W*(ζ)=Φ+iΨ为W*(ζ)=kV∞e^-iαζ+kV∞a^2e^iα/ζ-τ/2πi·Inζ+τα/2π+τ/2πi·Ina
    该式是不可压平面无旋圆柱绕流复势的一般公式,式中最后两项是常数,不影响速度场的分布,因此可以略去。
    对式中的ζ用解析函数ζ=f(z)代入,就得到了自由流速度为V∞、迎角为α、环量为-τ的翼型面绕流的复势:W(z)=kV∞e^iαf(z)+kV∞a^2e^iα/f(z)-τ/2πi·In[f(z)]
    得到流动的复势后,可以进一步求得复速度,再利用伯努利方程求得流场压强分布,对压强沿翼面积分就可以得到作用哦在翼面上的合力和合力矩。
    复变函数方法中,定义了复数合力:F=Fx+iFy,实部和虚部分别是合力在x,y轴方向的分量。它的复共轭为F-=Fx-iFy
    将压强用复速度(进一步用复势)表示后积分可得F-=ρV∞τe^-i(α+π/2)
    从而得到F=ρV∞τe^i(α+π/2)
    说明合力的大小等于ρV∞τ,合力的方向是由来流方向逆时针旋转π/2。如果采用矢量形式表示合力,则为F=ρV∞×τ。式中,τ的方向根据环量以右手定则确定。对任意物体的不可压附体平面无旋绕流,均有这个结论。
4.6.3 库塔-儒科夫斯基后缘条件及环量的确定

对于给定的圆柱半径和来流速度,当环量不同时,流动的驻点位置不同。环量为零时,前后驻店分别位于沿来流的x轴与圆柱面的两个交点处;有顺时针环量后,前后驻点相对于x轴下移相同距离。反过来,如果根据圆柱绕流的流动图画得知了驻点位置,就可以确定对应的绕流环量值。对翼型,通过解析函数将翼型周线映射为圆周后,可以将翼型绕流变换为圆柱绕流,那么如果知道翼型绕流中究竟是哪两个点对应于变换成的圆柱绕流的前后驻点,再根据映射函数就可确定该两点对应的圆柱上的位置,也就找到了圆柱绕流的驻点位置,进而可确定圆柱绕流的也是原翼型绕流的环量。
翼型绕流中究竟是何点对应圆柱绕流的驻点,需要通过翼型的绕流图画和解析函数映射特性来分析。低速翼型一般采用具有钝前缘和尖尾缘的流线型外形。试验观察中发现,当迎角较小时,上下翼面的流动在后缘汇合,这种流动称为无分离绕流。根据这一事实,库塔和儒科夫斯基先后提出假定:在无分离的理想绕流中,翼型上下翼面的流动必须在尖后缘处汇合。当翼型尖后缘有一定夹角,上下翼面流出的流线在后缘相交时,则V1=V2=0,后缘点是后驻点。但若翼型的上下翼面在后缘绕流相切,则上下翼面流出的质点在后缘汇合时应有相等的有限速度,在后缘处的速度均为有限值,即V1=V2<∞。
翼型绕流变换为圆柱绕流时,前缘附近的驻点对应于圆柱绕流的前驻点。后缘点如果为驻点自然对应于圆柱绕流的后驻点。而后缘点不是驻点是,其实也对应于圆柱绕流的后驻点。
对圆柱有环量绕流来说,已知驻点位置,就可以根据sinθ0=-τ/4πV∞a<0确定环量了。式中,θ0是后驻点相对于x轴正向也是来流的幅角。顺时针环量-τ(τ>0)时,驻点下移,θ0<0。这里来流迎角为α,而后驻点相对于x轴的幅角为θ0(由外形决定),则后驻点相对于来流的幅角为(θ0-α),此时有sin(θ0-α)=-τ/4πkV∞α<0
注意翼型绕流中自由流速度为V∞,变换为圆柱绕流后,自由流速度为kV∞。式中的θ0由解析函数确定,ζE=f(zB)=ae^θ0

4.6.4 翼型绕流环量的产生

上式说明了给定自由流速度和迎角情况下翼型的绕流环量与翼型形状的关系。由此确定的环量作为理想无黏理论求解翼型绕流问题的定解条件。

  1. 翼型的起动过程
    静止时,围绕翼型取一很大的封闭流体围线(可以延伸至无穷远),绕其环量为零。
    在起动过程开始的一瞬间,流体运动到处是无旋的,绕翼型的环量为零。此时后驻点不在后缘而在上翼面上。在尖锐后缘附近流体从下表面绕过尖角到上表面,形成大于π角的流动,那里速度无穷大,压力负无穷大。随时间发展,翼面上逐步形成边界层。由于上表面在尖后缘附近存在很大的逆压梯度,边界层流体承受不了这么大的逆压梯度,几乎立刻从后缘分离形成切向速度间断面,在后驻点急剧减速的作用下卷起一个逆时针旋涡,这就是起动涡。
    如果翼型在起动过程中产生了一个旋涡,也就是一部分流体发生了旋转,同时会引起另一部分流体的反向旋转。这个反方向的旋转以围绕翼型的环量的形式表现。绕翼型的环量总是与起动涡的环量大小相等,方向相反。也就是说随着起动涡的出现必将伴随着与之反向的绕翼型的环量产生,而且起动涡强度越大,绕翼型的环量越大。
    这个绕翼型的顺时针环量将增加上表面的气流速度,结果使后驻点的位置向后推移。只要后驻点尚未移动到后缘,后缘就不断有逆时针旋涡脱落,绕翼型的环量不断增大。这是一个逐步产生起动涡,绕翼型环量逐步增大的过程,直至后驻点移动到后缘,以上下两边气流在后缘平滑汇合时才不再有绕大于π角的流动,也才不再进一步产生起动涡,绕翼型的环量才到达最大值。随着时间推移,起动涡被气流冲到下流很远的地方,并逐渐被黏性耗散掉全部能量,只留下绕翼型的环量一个定值。
  2. 关于起动涡和附着涡的进一步讨论
    1 . 黏性作用是产生起动涡和附着涡的内在原因。绕大围线的环量在起动过程中始终保持为零。
    2 . 翼型尖后缘的存在使得能够从数学上确定绕翼型的环量,亦即附着涡的强度。库塔-儒科夫斯基假定可以进一步阐述为:具有尖锐后缘的物体在流体中运动时,会产生一个合适强度的绕物体的环量,环量大小刚好使得上下翼面的气流在后缘处光滑地汇合。
    3 . 起动过程完成后,翼型达到稳定运动状态,附着涡的环量保持为定值。之后的运动过程中,翼面附近的边界层黏性一直在起作用,但翼型保持稳定匀速运动其实是提供了能量用于黏性耗散,因而能保持稳定的边界层,保持附着涡强度不变。
    4 . 虽然壁面附近的边界层内流体是有旋的,但对绕翼型的大雷诺数流动,边界面很薄。因此可以将边界层内黏性有旋流体对整个流场的作用就抽象为“涡核”,亦即附着涡。翼型“涡核”以外的流场仍可以视为理想无旋的,求解翼面以外理想无旋流动是,“涡核”的环量作为定解条件给出。这种做法对解决升力问题是非常有效的。
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
R语言实战笔记第九章介绍了方差分析的内容。方差分析是一种用于比较两个或多个组之间差异的统计方法。在R语言中,可以使用lm函数进行方差分析的回归拟合。lm函数的基本用法是: myfit <- lm(I(Y^(a))~x I(x^2) I(log(x)) var ... [-1],data=dataframe 其中,Y代表因变,x代表自变,a代表指数,var代表其他可能对模型有影响的变。lm函数可以拟合回归模型并提供相关分析结果。 在方差分析中,还需要进行数据诊断,以确保模型的可靠性。其中几个重要的诊断包括异常观测值、离群点和高杠杆值点。异常观测值对于回归分析来说非常重要,可以通过Q-Q图和outlierTest函数来检测。离群点在Q-Q图中表示落在置信区间之外的点,需要删除后重新拟合并再次进行显著性检验。高杠杆值点是指在自变因子空间中的离群点,可以通过帽子统计来识别。一般来说,帽子统计高于均值的2到3倍即可标记为高杠杆值点。 此外,方差分析还需要关注正态性。可以使用car包的qqplot函数绘制Q-Q图,并通过线的位置来判断数据是否服从正态分布。落在置信区间内为优,落在置信区间之外为异常点,需要进行处理。还可以通过绘制学生化残差的直方图和密度图来评估正态性。 综上所述,R语言实战第九章介绍了方差分析及其相关的数据诊断方法,包括异常观测值、离群点、高杠杆值点和正态性检验。这些方法可以用于分析数据的可靠性和模型的适应性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [R语言实战笔记--第八章 OLS回归分析](https://blog.csdn.net/gdyflxw/article/details/53870535)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值