空气动力学(笔记自留)-第四章

第四章 理想不可压平面无旋流动

如果需要详细了解流动参数的具体变化规律或分布情况,就必须采用微分形式的基本方程,结合定解条件求解。
讨论各类简化流动的数学求解、基本流动规律和主要应用。
本章主要讨论定常的理想的不可压平面无旋流动。理想无黏流动适用的欧拉方程已比N-S方程大有简化,但依然是非线性的偏微分方程组。但对于不可压无旋流动,可以引入流函数和速度势函数,通过求解函数得到流场速度分布,再联立欧拉方程的伯努利积分得到压力分布。并且,由于流函数和势函数的方程为线性的因而解具有可叠加性,可以先针对非常简单的边界条件求得基本解(基本流动),再将基本流动叠加以得到绕流实际复杂外形的流动。

4.1 引言
  1. 平面流动的研究背景
    平面流动是指流体质点在相互平行的平面上运动,并且每一平面上的流动都相同。定常情况下,流速场可以表示为:u=u(x,y),v=v(x,y),w=0。
    理论上,均匀来流垂直于无限长柱体的绕流是二维流动。可以近似为二维流动的流动具有以下特点:在某一个方向上的流动速度比其他两个方向的流动速度小得多,可以忽略。如果不加说明,垂直于流动平面方向的长度取作单位长度。
    轴对称流动是指流体质点在通过固定轴线的半平面(称为子午面)上运动,并且所有子午面上运动都相同的流动。设轴对称流动的对称轴是z轴,在柱坐标系中轴对称流的速度场表示为:`Vz=Vz(z,r),Vr=Vr(z,r),Vθ=0``。实际中也有不少轴对称流动,沿轴向运动的旋转体驱动的流场或均匀来流平行于旋转体轴线的绕流都属于轴对称运动,如炮弹、火箭的零迎角飞行等。
    对平面流动和轴对称流动这样只有两个空间变量的二维流动,无论是分析还是数值计算都比一般的三维流动简单。
  2. 无旋流动的研究背景
    根据涡管的强度守恒定理、亥姆霍兹旋涡定理(涡管强度保持定理),在流体理想无黏、正压、彻体力有势的情况下,旋涡不生不灭。当直匀气流向飞行器流来时,由于无穷远的来流无旋,不计流体黏性,绕飞行器的流动仍然是无旋的。当然实际流体总有黏性,会产生涡旋。
    对于大雷诺数流动(飞行器绕流的雷诺数一般较大),黏性起作用的地方局限于壁面附近。壁面附近黏性作用下形成了绕机翼的环量,但一旦形成之后,就可将翼型视为涡核,翼面以外的流动仍是无旋流。
4.2 理想不可压平面流动的势函数和流函数
4.2.1 无旋流动的势函数

无旋流动指涡量(及旋度)或角速度为零的流动。根据旋度公式可知无旋流动的速度满足以下关系:∂u/∂y=∂v/∂x,∂v/∂z=∂w/∂y,∂w/∂x=∂u/∂z。
根据等价定理,可由流动无旋导出:udx+vdy+wdz可表述为某函数的全微分,即dΦ=udx+vdy+wdz。这个Φ=Φ(x,y,z)就称为速度势函数,也称速度位或位函数。根据速度势函数的定义,可知梯度等于流场速度矢量,即V=▽Φ,亦即∂Φ/Φx,y,z=u,v,w。
通过死地势函数与速度的上述关系,可以根据无旋流动的速度分布求得其速度势函数,反之亦然。

4.2.2 连续方程与流函数

连续方程是流体运动所需满足的质量守恒方程的微分表达式。根据连续方程成立,可以导出某些流动存在流函数。流函数是二维或轴对称流动中表示流场的一种方法,采用一个函数表示两个流速分量,可以简化流动求解。

  1. 平面不可压流动的流函数
    平面不可压流动的连续方程为▽·V=0,即∂u/∂x+∂v/∂y=0。可以将其改写为∂u/∂x=∂(-v)/∂y。
    根据由斯托克斯公式导出的四个等价条件可知,上式成立等价于dΨ=-vdx+udy,称函数Ψ=Ψ(x,y)为流函数。其和两个速度分量的关系为:∂Ψ/∂x=-v,∂Ψ/∂y=u
  2. 流函数的性质
    流函数的概念由拉格朗日首先引进。这里以平面不可压流动为代表讨论流函数的性质。
    1 . 流函数的等值线是流线
    流函数的等值线即Ψ为常数或dΨ=0的曲线。流函数等值线的方程为-vdx+udy=0或dx/u=dy/v。这就是平面流动的流线方程,说明流函数的等值线Ψ(x,y)=C是流线,不同常数C代表不同流线。
    2 . 过同一点的流函数等值线与等势线相交。
    流动无旋时存在速度势函数,且速度为速度势函数的梯度。速度势函数的梯度方向就是等势线的法线方向,等势线上没一点的法线方向就是该点的流速方向。另外,由流函数的等值线是流线,可知其上一点的切线方向就是该点的流速方向。因此,当流动既存在势函数又存在流函数时,过同一点的流函数等值线和等势线的斜率乘积为-1.
    3 . 流函数的物理意义
    流函数是由连续方程导出的,连续方程反映质量守恒,不可压1是反映体积守恒。平面不可压流动的流函数与体积流量密切相关。
    单位时间流过弧AB的体积流量QAB为QAB=∫udy-vdx。对于平面不可压流动,存在流函数,-vdx+udy即流函数的全微分。上式可进一步表达为QAB=ΨB-ΨA。QAB就是B、A两点的流函数值之差,也说明QAB与积分路径(弧段的具体形式)无关,只与起点和终点位置有关。
    综上,对平面不可压流,流场中两点间流函数之差等于单位时间流过连接两点的任意弧段的流体的体积。或两条流线间的流量是两流线的流函数值之差。流函数的等值线是流线,其上每点的切线方向代表了该点的流速方向。如果按照等差值华出流场的流函数等值线,从等值线的疏密分布还可看出速度大小。这是因为两条流线的流函数值之差代表在其间流动的流量,而任意两条相邻流线间要流过相等的流量,流线密的地方(流管窄)的地方流速快。
4.3 不可压平面无旋流动求解概述
4.3.1 不可压平面无旋流的基本方程

无旋流动存在势函数Φ,势函数的梯度即速度,即V=▽Φ。根据不可压流的连续方程,V·▽=0。于是有▽·(▽Φ)=▽^2Φ=0。可见不可压无旋流的势函数满足拉普拉斯方程。对平面不可压无旋流动,势函数满足的拉普拉斯方程为∂^2Φ/∂x^2+∂^2Φ/∂y^2=0
对于平面不可压流,存在流函数Ψ,且有∂Ψ/∂x=-v,∂Ψ/∂y=u。
当流动无旋时,有∂v/∂x-∂u/∂y=0。
于是得:∂^2Ψ/∂x^2+∂^2Ψ/∂y^2=0▽^2Ψ=0
也就是说,不可压平面无旋流动的流函数也满足拉普拉斯方程。
此处对不可压平面无旋流动,应用连续方程和无旋条件导出速度势函数和流函数的方程,均可作为这类运动的控制方程之一。求解出势函数或流函数方程中的任意一个都能得到流速场,但还不能解决动力学问题。若需要的到流场的压力分布,还需要进一步应用定常不可压无旋条件下欧拉方程的伯努利积分。

4.3.2 不可压平面无旋流七届的物理问题叙述和数学问题提法
  1. 物理问题叙述
    本章讨论的是平面物体的绕流。平面物体周线为L,L外的区域D为流动区域。来流参数P∞、ρ∞和V∞为给定值。要解决的问题就是在已知自由来流条件和物体形状高的情况下,求得物体周围流场的速度分布、压力分布等。假定流动视为不可压平面无旋流动。下面分别给出速度势函数和流函数问题的数学提法。
  2. 速度势函数Φ(x,y)问题的数学提法
    控制方程为:∂^2Φ/∂x^2+∂^2Φ/∂y^2=0,(x,y)∈D
    定解条件如下:
    1 . 来流是二维均匀流,即∂Φ/∂x|∞=u∞,∂Φ/∂y|∞=v∞。
    2 . 物面周线L上满足无渗透条件,即流速与物面相切,法向速度为零:∂Φ/∂n|L=Vn=0。
    3 . 绕封闭物面周线的二维流场是双连通域,因此还需给出绕周线上的环量:∮V·dl=τ或∮dΦ=τ。
    以上定解条件适用于有环量的无旋流动。
    绕壁面的环量是对黏性作用的 抽象简化,它是无旋流场的求解无法确定的,必须作为定解条件给出。
  3. 不可压平面无旋流的流函数Ψ(x,y)问题的数学提法
    控制方程为∂^2Ψ/∂x^2+∂^2Ψ/∂y^2=0,(x,y)∈D
    定解条件如下:
    1 . 来流是二维均匀流,即∂Ψ/∂x|∞=u∞,∂Ψ/∂y|∞=-v∞。
    2 . 物面周线L上满足无渗透条件,即物面是流线,物面上流函数是常数:Ψ|L=const。
    3 . 绕封闭物面周线的环量条件:∮V·dl=τ或∮(∂Ψdx/∂y-∂Ψdy/∂x)=τ。
    对于不可压平面无旋流动,求解速度势函数或流函数中任意一个均可得出流速场,可根据具体情况选用。两种方法的主要区别是:用流函数求解流动时,物面上用的是第一类边界条件,而用速度势函数求解物面上是第二类边界条件当用基本解叠加或数值方法求解时,第一类边界条件问题比较容易处理。另外,求得流函数后能直接得到流线谱,可以较直观地来描述流动。
4.3.3 方程求解方法

上述不可压平面无旋流动的速度势函数或流函数的定解问题均为拉普拉斯边值问题,其解是存在且唯一的。求解的方法有解析法、复变函数方法、基本解叠加法、数值求解(偏微分方程离散为差分方程后求数值解)、徒手绘制流线或等位线网图法(用于简单边界,如管道内部的流动)。本章主要采用基本解叠加法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值