PRML读书笔记——线性回归模型

这一章从线性回归模型的基本形式出发,主要围绕线性基函数的回归模型展开,分析了最大似然估计和最小平方误差函数的关系、最小平方误差函数的几何意义、正则化的最小平方误差,然后用偏置-方差分解的角度理解正则化项;用贝叶斯的思想分析线性回归模型,介绍了模型证据的意义,最后分析线性回归模型的局限性

线性基函数模型

基础

回归问题的最简单模型是输⼊变量的线性组合:

y(x,w)=w0+w1x1+...+wDxD

这通常被称为线性回归,模型的关键是它既是 { wk} 的线性函数,也是输入变量 { xi} 的线性函数,虽然简单但是也带来了很大的局限性。

考虑将输⼊变量的固定的⾮线性函数进⾏线性组合,形式为:

y(x,w)=w0+j=1M1wjϕj(x)

其中, ϕj(x) 被称为基函数,这个模型参数总数为M

这里 w0 是偏置参数,可以融入系数中,得:

y(x,w)=j=0M1wjϕj(x)=wTx

现在, y(w,x) 是x的非线性函数,但它依然是 w 的线性函数,一般模型依然被称为线性模型

基函数选择有很多如

(1)径向基函数

ϕj(x)=exp{(xμj)22s2}

(2)sigmoid

σa=11+exp(a)

最大似然与最小平方

现在线性回归的模型已经搭建出来,考虑求解,假设⽬标变量 t 由确定的函数 y(x,w) 给出,这个函数被附加了⾼斯噪声,即

t=y(x,w)+ϵ

假设噪声是零均值的高斯随机变量,精度为 β ,则对应的概率分布满足:

p(t|x,w,β)=N(t|y(x,w),β1)

E[t|x]=tp(t|x)dt=y(x,w)


注意,这里有一个假设:给定x的条件下,t的条件分布是单峰的,这对于⼀些实际应⽤来说是不合适的。对于不同问题而言,这或许会是修改loss的起源之一。

那么,对于一个观测数据集 X={ x1,...,xN} ,它对应的后验概率为:

p(t|x,w,β)=n=1NN(tn|wTΦ(xn),β1)

然后构造似然函数

ln p(t|w,β)==n=1Nln N(tn|wTϕ(xn),β1)N2ln βN2ln(2π)βED(w)

其中,平方和误差定义为:

ED(w)=12n=1N{ tnwTϕ(xn)}2

所以,平方和误差本身就是出自高斯分布的前提假设的。

对似然函数求导并令导数为0,可得到:

wML=(ΦTΦ)1ΦTt

上式是最小平方问题的规范方程,其中 Φ N×M 的设计矩阵,有:

Φ=
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值