强化学习 优势函数(Advantage Function)

目录

什么是优势函数

归一化、激活函数等学习问题 

为什么要使用优势函数

常见的优势函数


什么是优势函数

优势函数表达在状态s下,某动作a相对于平均而言的优势
从数量关系来看,就是随机变量相对均值的偏差
使用优势函数是深度强化学习极其重要的一种策略,尤其对于基于policy的学习。
定义如下:

归一化、激活函数等学习问题 

以下是常见的激活函数,梯度学习时,可以发现:
1,Sigmoid一类的激活函数,x在两边时,函数趋于饱和;
2,在0附近曲线几乎线性,学习速率最大;
3,Relu一类的激活函数,函数随x无限增大,学习会变得响应过敏感,难以控制。
总之,输入x不能过大,否则学习会变得效率低,以至于学不到最优。

from deeplearning.ai

对于Sigmoid,归一化是将输入标准化

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值