目录
什么是优势函数
优势函数表达在状态s下,某动作a相对于平均而言的优势。
从数量关系来看,就是随机变量相对均值的偏差。
使用优势函数是深度强化学习极其重要的一种策略,尤其对于基于policy的学习。
定义如下:
归一化、激活函数等学习问题
以下是常见的激活函数,梯度学习时,可以发现:
1,Sigmoid一类的激活函数,x在两边时,函数趋于饱和;
2,在0附近曲线几乎线性,学习速率最大;
3,Relu一类的激活函数,函数随x无限增大,学习会变得响应过敏感,难以控制。
总之,输入x不能过大,否则学习会变得效率低,以至于学不到最优。

对于Sigmoid,归一化是将输入标准化