基础学习:了解朴素贝叶斯理论(day04)

朴素贝叶斯算法

朴素贝叶斯法 = 贝叶斯定理 + 特征条件独立。

输入 X ∈ R n X \in R^n XRn空间是n维向量集合,输出空间 y = { c 1 , c 2 , . . . , c K } y=\{c_1,c_2,...,c_K\} y={c1,c2,...,cK}. 所有的X和y都是对应空间上的随机变量. P ( X , Y ) P(X,Y) P(X,Y)是X和Y的联合概率分别. 训练数据集(由 P ( X , Y ) P(X,Y) P(X,Y)独立同分布产生):
T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)}

计算测试数据x的列表,我们需要依次计算 P ( Y = c k ∣ X = x ) P(Y=c_k|X=x) P(Y=ckX=x),取概率最大的值,就是x对应的分类。

P ( Y = c k ∣ X = x ) P(Y=c_k|X=x) P(Y=ckX=x)我们一般这样解释,当给定 ( X = x ) (X=x) (X=x)的条件下, Y = c k Y=c_k Y=ck的概率,这就是条件概率. 这就简单了,我们只需要每个的x,计算其对应的 c k , k ∈ [ 1 , 2 , . . . , K ] c_k,k \in [1,2,...,K] ck,k[1,2,...,K]的概率,选择最大的概率作为这个x的类别进行了.

通过贝叶斯公式进行变形,得到预测的概率计算公式:

P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = c k ) P(Y=c_k|X=x)=\frac{P(X=x|Y=c_k)P(Y=c_k)}{\sum_{k}P(X=x|Y=c_k)P(Y=c_k)} P(Y=ckX=x)=kP(X=xY=ck)P(Y=ck)P(X=xY=ck)P(Y=ck)

我们只需要计算以下两个概率即可,又由于朴素贝叶斯假设条件独立,我们可以单独计算每个特征的条件概率: P ( X ( i ) = x ( i ) ∣ Y = c k ) P(X^{(i)}=x^{(i)}|Y=c_k) P(X(i)=x(i)Y=ck)和类目 c k c_k ck的先验概率: P ( Y = c k ) P(Y=c_k) P(Y=ck)。为了更好的理解这个公式,看下图解释:

其中:
P ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) N , k = 1 , 2 , . . . , K P(Y=c_k)=\frac{\sum_{i=1}^{N}I(y_i=c_k)}{N}, k=1,2,...,K P(Y=ck)=Ni=1NI(yi=ck),k=1,2,...,K

当涉及到多个条件时,朴素贝叶斯有一个提前的假设,我们称之为 条件独立性假设(或者 简单假设:Naive):公式如下
P ( A , B ∣ Y ) = P ( A ∣ Y ) ⋅ P ( B ∣ Y ) P(A,B|Y) = P(A|Y) \cdot P(B|Y) P(A,BY)=P(AY)P(BY)
这个公式是朴素贝叶斯的基础假设,即各个条件概率是相互独立的,A不影响B,B不影响A。
而对这里来说,假设 X = [ x 1 , x 2 , . . . , x n ] X = [x_1,x_2,...,x_n] X=[x1,x2,...,xn]

P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , . . . , X ( n ) = x ( n ) ∣ Y = c k ) = ∏ i = 1 n P ( x i ∣ y ) P(X=x|Y=c_k) \\ =P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k) \\ =\prod_{i=1}^{n} P(x_i | y) P(X=xY=ck)=P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)Y=ck)=i=1nP(xiy)

由此原式可以等价为:

P ( Y = c k ∣ X = x ) = ∏ i = 1 n P ( x i ∣ Y = c k ) P ( Y = c k ) ∑ k ∏ i = 1 n P ( x i ∣ Y = c k ) P ( Y = c k ) P(Y=c_k|X=x)=\frac{\prod_{i=1}^{n} P(x_i | Y=c_k)P(Y=c_k)}{\sum_{k}\prod_{i=1}^{n} P(x_i | Y=c_k)P(Y=c_k)} P(Y=ckX=x)=ki=1nP(xiY=ck)P(Y=ck)i=1nP(xiY=ck)P(Y=ck)

我们为了选择后验概率最大的结果,进行概率的比较,由于分母一致,这里直接去掉分母,得到最后的计算公式。

y = a r g m a x c k P ( Y = c k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c k ) y=arg max_{c_k}P(Y=c_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=c_k) y=argmaxckP(Y=ck)jP(X(j)=x(j)Y=ck)

我们来看一个实例,更好的理解贝叶斯的计算过程,根据天气和是否是周末预测一个人是否会出门。

index X 1 : X_1: X1:天气的好坏 X 2 : X_2: X2:是否周末 Y : Y: Y:是否出门
1出门
2出门
3不出门
4出门
5不好出门
6不好不出门

根据上述数据,为了更好的理解计算过程,我们给出几个计算公式:

a. 当出门的条件下,X_1是天气不好的概率:
p ( X 1 = 不 好 ∣ Y = 出 门 ) = p ( X 1 = 不 好 , Y = 出 门 ) p ( Y = 出 门 ) = 1 4 p(X_1=不好|Y=出门) =\frac{p(X_1=不好,Y=出门)}{p(Y=出门)}=\frac{1}{4} p(X1=Y=)=p(Y=)p(X1=,Y=)=41

b. 出门的概率
p ( Y = 出 门 ) = 4 6 p(Y=出门)=\frac{4}{6} p(Y=)=64

c. X_1天气不好的概率、
p ( X 1 = 不 好 ) = 2 6 p(X_1=不好)=\frac{2}{6} p(X1=)=62

d. 在X_1天气不好的情况下,出门的概率:
p ( Y = 出 门 ∣ X 1 = 不 好 ) = p ( X 1 = 不 好 ∣ Y = 出 门 ) ⋅ p ( Y = 出 门 ) p ( X = 不 好 ) = 1 4 ⋅ 4 6 2 6 = 1 2 p(Y=出门|X_1=不好)=\frac{p(X_1=不好|Y=出门) \cdot p(Y=出门)}{p(X=不好)} \\ =\frac{\frac{1}{4} \cdot \frac{4}{6}}{\frac{2}{6}}=\frac{1}{2} p(Y=X1=)=p(X=)p(X1=Y=)p(Y=)=624164=21

f. 在X_1天气不好的情况下,不出门的概率:
p ( Y = 出 门 ∣ X 1 = 不 好 ) = 1 − p ( Y = 不 出 门 ∣ X 1 = 不 好 ) = 1 − 1 2 = 1 2 p(Y=出门|X_1=不好)=1-p(Y=不出门|X_1=不好)=1-\frac{1}{2}=\frac{1}{2} p(Y=X1=)=1p(Y=X1=)=121=21

朴素贝叶斯的优缺点

优点:
朴素贝叶斯算法主要基于经典的贝叶斯公式进行推倒,具有很好的数学原理。而且在数据量很小的时候表现良好,数据量很大的时候也可以进行增量计算。由于朴素贝叶斯使用先验概率估计后验概率具有很好的模型的可解释性。

缺点:
朴素贝叶斯模型与其他分类方法相比具有最小的理论误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进,例如为了计算量不至于太大,我们假定每个属性只依赖另外的一个。解决特征之间的相关性,我们还可以使用数据降维(PCA)的方法,去除特征相关性,再进行朴素贝叶斯计算。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值