凸透镜聚焦

本文探讨了理想凸透镜的形状,并通过光程差相等的原理推导出其为双曲线方程。文中提供了详细的数学证明过程,并附有仿真效果及菲涅尔透镜原理图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一直认为凸透镜是标准的圆弧,今天特模拟了下标准圆弧的焦点,下面直接上图吧。

由此可见凸透镜看起来不是标准的圆弧或者椭圆的圆弧。

下面是菲涅尔透镜原理图。

下面开始探讨下理想的凸透镜(所有光线都聚焦到一个点)到底是什么样的曲线。

按照光程差相等, 得出理想的凸透镜是一个双曲线方程, 如下:

其中:n为折射率,f为焦距,d为透镜厚度。

下面是仿真效果:

证明

图片

可以证明透镜上的任何一点(x,y),满足

条件sin(θ2)=n*sin(θ1), tan(θ1)=-1/y',其中θ1是入射角,θ2是出射角。

可以得到:tan(θ2-θ1)=y/(f-x),或f=x+y/tan(θ2-θ1) 及所有的出设光线都满足在焦点(f,0)处汇集。

证明:

1. 一阶导数:y'=f'(x), 先只考虑x<=d, y>0的部分.

图片

2. 由折射率可得:sin(θ2)=n*sin(θ1), tan(θ1)=-1/y'

3. fx = x + y/tan(θ2-θ1), 化简可得:

图片

进一步化简可得:

图片

提取公因数可得:

图片

显然, fx = f.(上式分子上的f^{2}n为笔误,应该为fn

由此证明对于任意一点(x, y),满足 x + y/tan(θ2-θ1) = f, 及所有平行光线都满足在(f, 0)处汇集。

下载链接链接:百度网盘 请输入提取码, 提取码关注“湖中鸟”公众号, 发送"提取码“即可获取。

             或扫码关注“湖中鸟”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值