透镜的位相调制总结

前期分析透镜位相调制的几个基本假设:

1)薄透镜,忽略折射引起的光线的横向偏移。

2)透镜无吸收,完全透明,均匀,不改变光场振幅,仅改变位相。

3)透镜孔径为无线大(以后再考虑孔径影响)

4)傍轴近似。

总结放在最前面,具体推导暂时先不写。

一、透镜的位相调制

1、从复振幅透过率的定义式推出透镜的复振幅透过率:

t_{1}(x,y)=exp[-jk(d_{0}+d_{i})])exp[-j\frac{k}{2f}(x^{2}+y^{2})]

exp[-jk(d_{0}+d_{i})]是常数项,改变的是光波整体的位相分布,并不影响相对空间分布,分析时可忽略掉。

exp[-j\frac{k}{2f}(x^{2}+y^{2})]是调制项,它改变了平面上位相的相对空间分布,能把发散球面波变换为会聚球面波。

2、从透镜的厚度函数推导出透镜的复振幅透过率

t_{1}(x,y)=exp[-jkn\Delta_{0} ])exp[-j\frac{k}{2f}(x^{2}+y^{2})]

exp[-jkn\Delta_{0} ])是常数项,exp[-j\frac{k}{2f}(x^{2}+y^{2})]是透镜位相因子

从两种方式推导来看,忽略常复数因子后,两者相同。 

3、引入透镜的光瞳函数后,透镜的复振幅透过率:

实际透镜总是有大小的,即存在一个有限大小的孔径,透镜的有限孔径为光瞳函数P(x,y)

t_{1}(x,y)=exp[-j\frac{k}{2f}(x^{2}+y^{2})]P(x,y)

exp[-j\frac{k}{2f}(x^{2}+y^{2})]表示透镜对入射波前的位相调制

P(x,y)表示透镜对入射波前大小范围的限制,

      透镜对透射的光波具有位相调制功能,根本原因是由于透镜本身的厚度变化,使得入射光波在通过透镜的不同部位时,经过的光程差不同,即所受时间延迟不同,从而使得光波的等相位面发生弯曲。

球面透镜将平面波变换成球面波的结论,在很大程度上依赖于傍轴近似,若在非傍轴近似条件下,即使透镜表面是理想球面波,透射光波也将偏离理想球面波,即透镜产生波像差。

二、透镜的傅里叶变换性质

以三种常用的光路结构形式,以平面波垂直入射来说明透镜的傅里叶变换性质,最后对球面波入射情况作简要说明:

物体的复振幅透过率函数为t(x,y),其频谱为T(fx,fy)

1、物体紧靠透镜前

a、振幅为A的平面波垂直照射物体,物体与透镜之间的平面上的复振幅分布为U_{l}(x,y)

U_{l}(x,y) = At(x,y)

b、紧靠透镜后的平面上复振幅分布为U_{l}^{'}(x,y)

U_{l}^{'}(x,y) = U_{l}(x,y)t_{1}(x,y)=At(x,y)exp(-j\frac{k}{2f}(x^{2}+y^{2}))

c、透镜后焦面上复振幅为U_{f}(x_{f},y_{f})

光波从透镜后传播f距离,到达焦面上产生的场分布可根据菲涅尔衍射公式计算(去除常量位相因子)

U_{f}(x_{f},y_{f})=\frac{1}{j\lambda f}exp[j\frac{k}{2f}(x_{f}^{2}+y_{f}^{2})]FT(U_{l}^{'}(x,y)exp[j\frac{k}{2f}(x^{2}+y^{2})])_{f_{x}=\frac{x_{f}}{\lambda f},f_{y}=\frac{y_{f}}{\lambda f}}

综合以上,得到(舍去常量位相因子),

即透镜后焦面上的光场分布正比于物体的傅里叶变换,其频率取值与后焦面坐标的关系是f_{x}=\frac{x_{f}}{\lambda f},f_{y}=\frac{y_{f}}{\lambda f}但是这种傅里叶变换关系不是准确的,由于变换式前存在位相因子exp[j\frac{k}{2f}(x_{f}^{2}+y_{f}^{2})],后焦面上的位相分布与物体频谱的位相分布并不相同。通常记录和测量的式观察平面上的强度分布,这一位相弯曲对它并没有影响,所以后焦面光强分布恰恰式物体的功率谱:

2、物体在透镜前

a、紧靠物体后平面上的复振幅分布U_{0}(x_{0},y_{0})

U_{0}(x_{0},y_{0}) = At(x_{0},y_{0})

b、传播到透镜前的复振幅分布为U_{l}(x,y)

物体后光波传播到透镜前可采用菲涅尔衍射公式,可利用角谱理论分析,

FT(U_{1}(x,y)) = FT(U_{0}(x_{0},y_{0}))H(f_{x},f_{y})=FT(U_{0}(x_{0},y_{0}))exp(jkz\sqrt{1-cos\alpha ^{2}-cos\beta ^{2}})= AT(f_{x},f_{y})exp(-j\pi \lambda d_{0}[f_{x}^{2}+f_{y}^{2})]

c、紧靠透镜后的复振幅分布为U_{l}^{'}(x,y)

U_{l}^{'}(x,y)=U_{l}(x,y)t(x,y)=U_{l}(x,y)exp(-j\frac{k}{2f}(x^{2}+y^{2}))

d、透镜后焦面上复振幅为U_{f}(x_{f},y_{f})

U_{f}(x_{f},y_{f})=\frac{1}{j\lambda f}exp[j\frac{k}{2f}(x_{f}^{2}+y_{f}^{2})]FT(U_{l}^{'}(x,y)exp[j\frac{k}{2f}(x^{2}+y^{2})])_{f_{x}=\frac{x_{f}}{\lambda f},f_{y}=\frac{y_{f}}{\lambda f}}=\frac{1}{j\lambda f}exp[j\frac{k}{2f}(x_{f}^{2}+y_{f}^{2})]FT[U_{l}(x,y)]

结论:透镜后焦面上的光场分布正比与物体的傅里叶变换,其频率取值与后焦面坐标关系为f_{x}=\frac{x_{f}}{\lambda f},f_{y}=\frac{y_{f}}{\lambda f},一般情况下,FT前面仍有二次相位因子,不是准确的FT。但不影响强度分布,对应的强度分布为

3、物体在透镜后

a、紧靠透镜后的复振幅U_{l}^{'}(x,y)

U_{l}^{'}(x,y)=At_{1}(x,y)=Aexp(-j\frac{k}{2f}(x^{2}+y^{2}))

b、紧靠物体前平面上的复振幅分布U_{0}(x_{0},y_{0})

几何光学近似下,会聚球面波投射到物平面上的场分布U_{0}(x_{0},y_{0})=\frac{Af}{d}exp[-j\frac{k}{2d}(x_{0}^{2}+y_{0}^{2})]

c、紧靠物体后平面上的复振幅分布U_{0}^{'}(x_{0},y_{0})

U_{0}^{'}(x_{0},y_{0})=U_{0}(x_{0},y_{0})t(x_{0},y_{0})

d、透镜后焦平面上的复振幅分布U_{f}(x_{f},y_{f})

U_{f}(x_{f},y_{f})=\frac{1}{j\lambda d}exp[j\frac{k}{2d}(x_{f}^{2}+y_{f}^{2})]FT[U_{0}^{'}(x_{0},y_{0})exp[j\frac{k}{2d}(x_{f}^{2}+y_{f}^{2})]]_{f_{x}=\frac{x_{f}}{\lambda d},f_{y}=\frac{y_{f}}{\lambda d}}

舍去常量位相因子得到:

结论:当物体位于透镜后方时,后焦面上仍然得到物体的傅里叶变换,除了相差一个二次位相因子,当d=f时,所得结果与物体紧靠透镜前放置一样,说明物体无论紧靠透镜前放置还是紧靠透镜后放置,效果是一样的。变换式前的位相因子并不影响强度,后焦面上强度分布仍然是物体的功率谱:

与前两种情况不同,这里频率取值与后焦面上坐标关系是: x_{f}=\lambda df_{x},y_{f}=\lambda df_{y}

考虑透镜孔径的影响

通常用光瞳函数P(x,y)描述透镜的有限孔径,透镜的复振幅透过率为:

t_{1}(x,y)=exp[-j\frac{k}{2f}(x^{2}+y^{2})]P(x,y)

1、物体紧靠透镜放置,

透镜后焦面复振幅分布为

2、物体在透镜后方,

由几何光学近似,光瞳函数为P(x_{0}\frac{f}{d},y_{0}\frac{f}{d})

透镜后焦面复振幅为

3、物体放置在透镜前方

投影光瞳函数为P(x_{0}+\frac{d_{0}}{f}x_{f},y_{0}+\frac{d_{0}}{f}y_{f})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值