前期分析透镜位相调制的几个基本假设:
1)薄透镜,忽略折射引起的光线的横向偏移。
2)透镜无吸收,完全透明,均匀,不改变光场振幅,仅改变位相。
3)透镜孔径为无线大(以后再考虑孔径影响)
4)傍轴近似。
总结放在最前面,具体推导暂时先不写。
一、透镜的位相调制
1、从复振幅透过率的定义式推出透镜的复振幅透过率:
是常数项,改变的是光波整体的位相分布,并不影响相对空间分布,分析时可忽略掉。
是调制项,它改变了平面上位相的相对空间分布,能把发散球面波变换为会聚球面波。
2、从透镜的厚度函数推导出透镜的复振幅透过率
是常数项,
是透镜位相因子
从两种方式推导来看,忽略常复数因子后,两者相同。
3、引入透镜的光瞳函数后,透镜的复振幅透过率:
实际透镜总是有大小的,即存在一个有限大小的孔径,透镜的有限孔径为光瞳函数P(x,y)
表示透镜对入射波前的位相调制
P(x,y)表示透镜对入射波前大小范围的限制,
透镜对透射的光波具有位相调制功能,根本原因是由于透镜本身的厚度变化,使得入射光波在通过透镜的不同部位时,经过的光程差不同,即所受时间延迟不同,从而使得光波的等相位面发生弯曲。
球面透镜将平面波变换成球面波的结论,在很大程度上依赖于傍轴近似,若在非傍轴近似条件下,即使透镜表面是理想球面波,透射光波也将偏离理想球面波,即透镜产生波像差。
二、透镜的傅里叶变换性质
以三种常用的光路结构形式,以平面波垂直入射来说明透镜的傅里叶变换性质,最后对球面波入射情况作简要说明:
物体的复振幅透过率函数为t(x,y),其频谱为T(fx,fy)
1、物体紧靠透镜前
![]()
a、振幅为A的平面波垂直照射物体,物体与透镜之间的平面上的复振幅分布为
b、紧靠透镜后的平面上复振幅分布为
,
c、透镜后焦面上复振幅为
光波从透镜后传播f距离,到达焦面上产生的场分布可根据菲涅尔衍射公式计算(去除常量位相因子)
综合以上,得到(舍去常量位相因子),
即透镜后焦面上的光场分布正比于物体的傅里叶变换,其频率取值与后焦面坐标的关系是
。但是这种傅里叶变换关系不是准确的,由于变换式前存在位相因子
,后焦面上的位相分布与物体频谱的位相分布并不相同。通常记录和测量的式观察平面上的强度分布,这一位相弯曲对它并没有影响,所以后焦面光强分布恰恰式物体的功率谱:
2、物体在透镜前
a、紧靠物体后平面上的复振幅分布
b、传播到透镜前的复振幅分布为
,
物体后光波传播到透镜前可采用菲涅尔衍射公式,可利用角谱理论分析,
c、紧靠透镜后的复振幅分布为
d、透镜后焦面上复振幅为
结论:透镜后焦面上的光场分布正比与物体的傅里叶变换,其频率取值与后焦面坐标关系为
,一般情况下,FT前面仍有二次相位因子,不是准确的FT。但不影响强度分布,对应的强度分布为
3、物体在透镜后
a、紧靠透镜后的复振幅
b、紧靠物体前平面上的复振幅分布
几何光学近似下,会聚球面波投射到物平面上的场分布
c、紧靠物体后平面上的复振幅分布
d、透镜后焦平面上的复振幅分布
舍去常量位相因子得到:
结论:当物体位于透镜后方时,后焦面上仍然得到物体的傅里叶变换,除了相差一个二次位相因子,当d=f时,所得结果与物体紧靠透镜前放置一样,说明物体无论紧靠透镜前放置还是紧靠透镜后放置,效果是一样的。变换式前的位相因子并不影响强度,后焦面上强度分布仍然是物体的功率谱:
与前两种情况不同,这里频率取值与后焦面上坐标关系是:
![]()
考虑透镜孔径的影响
通常用光瞳函数P(x,y)描述透镜的有限孔径,透镜的复振幅透过率为:
1、物体紧靠透镜放置,
透镜后焦面复振幅分布为
2、物体在透镜后方,
由几何光学近似,光瞳函数为
透镜后焦面复振幅为
3、物体放置在透镜前方
投影光瞳函数为