Pytorch YOLOv3 网络结构

本文详细介绍了使用Pytorch实现的YOLOv3网络结构,包括多个卷积、批量归一化、ReLU层的组合,以及短路层的运用,展示了网络的详细模块构成。
摘要由CSDN通过智能技术生成

Pytorch YOLOv3 结构
ModuleList(
(0): Sequential(
(conv_with_bn_0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_0): ReLU(inplace)
)
(1): Sequential(
(conv_with_bn_1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(batch_norm_1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_1): ReLU(inplace)
)
(2): Sequential(
(conv_with_bn_2): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(batch_norm_2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_2): ReLU(inplace)
)
(3): Sequential(
(conv_with_bn_3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_3): ReLU(inplace)
)
(4): Sequential(
(shortcut_4): shortcutLayer()
)
(5): Sequential(
(conv_with_bn_5): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(batch_norm_5): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_5): ReLU(inplace)
)
(6): Sequential(
(conv_with_bn_6): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(batch_norm_6): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_6): ReLU(inplace)
)
(7): Sequential(
(conv_with_bn_7): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_7): ReLU(inplace)
)
(8): Sequential(
(shortcut_8): shortcutLayer()
)
(9): Sequential(
(conv_with_bn_9): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(batch_norm_9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_9): ReLU(inplace)
)
(10): Sequential(
(conv_with_bn_10): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_10): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_10): ReLU(inplace)
)
(11): Sequential(
(shortcut_11): shortcutLayer()
)
(12): Sequential(
(conv_with_bn_12): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(batch_norm_12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_12): ReLU(inplace)
)
(13): Sequential(
(conv_with_bn_13): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(batch_norm_13): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_13): ReLU(inplace)
)
(14): Sequential(
(conv_with_bn_14): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_14): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True

对于pytorch yolov8模型在缺陷检测方面的问题,可以参考以下几点: 1. YOLOv3模型在目标检测方面效果较好,但是对于小目标和聚集目标的检测效果可能较差。这是因为YOLOv3模型在每个grid cell中只有两个bounding boxes,对应一个类别,限制了对小目标和聚集目标的检测能力。\[3\] 2. SSD模型是对YOLOv1的改进,针对YOLOv1在宽高不常见物体和小目标物体侦测效果差的问题进行了改进。SSD去掉了网络最后的全连接层,认为目标检测中的物体只与周围信息相关,不需要全连接层。这样做可以提高对小目标的检测效果。\[2\] 3. 在使用pytorch yolov8模型进行缺陷检测时,可以考虑以下几个方面的问题:模型的训练数据集是否包含了足够多的缺陷样本,模型的网络结构是否适合缺陷检测任务,模型的超参数是否经过合理的调整和优化等。同时,也可以参考相关的帖子和教程,如《Pytorch实现YOLOv3训练自己的数据集》,来了解如何使用pytorch yolov8模型进行缺陷检测。\[1\] 综上所述,pytorch yolov8模型在缺陷检测方面可能存在一些限制和挑战,但可以通过合理的数据集准备、网络结构设计和超参数调整等方法来提高检测效果。 #### 引用[.reference_title] - *1* [Pytorch-YOLOv3-DAGM2007缺陷检测](https://blog.csdn.net/cheweng4363/article/details/107199141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【目标检测】YOLOv3手动实现Pytorch代码全流程详解 RCNN、YOLO系列](https://blog.csdn.net/bu_fo/article/details/109204636)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值