Pytorch YOLOv3 结构
ModuleList(
(0): Sequential(
(conv_with_bn_0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_0): ReLU(inplace)
)
(1): Sequential(
(conv_with_bn_1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(batch_norm_1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_1): ReLU(inplace)
)
(2): Sequential(
(conv_with_bn_2): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(batch_norm_2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_2): ReLU(inplace)
)
(3): Sequential(
(conv_with_bn_3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_3): ReLU(inplace)
)
(4): Sequential(
(shortcut_4): shortcutLayer()
)
(5): Sequential(
(conv_with_bn_5): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(batch_norm_5): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_5): ReLU(inplace)
)
(6): Sequential(
(conv_with_bn_6): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(batch_norm_6): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_6): ReLU(inplace)
)
(7): Sequential(
(conv_with_bn_7): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_7): ReLU(inplace)
)
(8): Sequential(
(shortcut_8): shortcutLayer()
)
(9): Sequential(
(conv_with_bn_9): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(batch_norm_9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_9): ReLU(inplace)
)
(10): Sequential(
(conv_with_bn_10): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_10): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_10): ReLU(inplace)
)
(11): Sequential(
(shortcut_11): shortcutLayer()
)
(12): Sequential(
(conv_with_bn_12): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(batch_norm_12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_12): ReLU(inplace)
)
(13): Sequential(
(conv_with_bn_13): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(batch_norm_13): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu_13): ReLU(inplace)
)
(14): Sequential(
(conv_with_bn_14): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(batch_norm_14): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True
Pytorch YOLOv3 网络结构
最新推荐文章于 2023-05-16 10:10:43 发布
本文详细介绍了使用Pytorch实现的YOLOv3网络结构,包括多个卷积、批量归一化、ReLU层的组合,以及短路层的运用,展示了网络的详细模块构成。
摘要由CSDN通过智能技术生成