PPO(Proximal Policy Optimization,邻近策略优化)是一种在强化学习中广泛使用的策略梯度算法。由 OpenAI 在 2017 年提出,它是一种用于训练深度学习模型以进行决策的算法,特别是在需要决策策略的领域,如游戏、机器人控制等。
PPO 旨在改进以前的策略梯度算法,如 TRPO(Trust Region Policy Optimization,信任区域策略优化)。PPO 的关键创新是它引入了一个“邻近”目标函数,该函数限制了策略更新步骤中策略变化的幅度。这种方法旨在避免在训练过程中采取过大的更新步骤,这可能导致性能急剧下降。
PPO 主要有两个变种:
-
PPO-Penalty:
- PPO-Penalty 通过添加一个惩罚项来限制策略更新,使新策略与旧策略之间的差异不会太大。
-
PPO-Clip:
- PPO-Clip 使用了一个称为“clipping”的技术,该技术通过裁剪概率比率(新策略与旧策略之间的概率比率),来防止更新偏离“安全”区域过远。
PPO 算法的关键点包括:
- 目标函数的设计:设计了一种特殊的目标函数,能够鼓励模型提高良好行为的概率,同时避免由于过大的策略更新而产生不稳定的训练过程。
- 样本效率:PPO 试图通过每次迭代从环境中收集更多的样本信息,来提高样本效率。
- 计算效率:与 TRPO 相比,PPO 简化了计算过程,它避免了计算复杂的 Hessian 矩阵,因此在实践中更加高效。
- 通用性:PPO 已经被证明适用于各种环境,从离散动作空间到连续动作空间都有广泛的应用。
在 PPO 中,策略是用神经网络参数化的,网络的权重通过梯度上升来更新,目的是最大化目标函数。PPO 属于 on-policy 算法,意味着它需要使用当前策略生成的数据来进行学习。这与 off-policy 算法不同,后者可以使用旧的或由不同策略生成的数据进行学习。
PPO 由于其良好的性能和在多种任务中的鲁棒性,已经成为深度强化学习领域最受欢迎的算法之一。