上文详解了YOLO v4 的网络架构。本文探讨下 YOLO v4 使用的 trick。
对于目标检测任务,分为Backbone, Neck, Head 部分。其中 Backbone 常在 ImageNet 上进行图像分类的预训练,然后目标检测架构中的Backbone即预训练好的去掉分类层的网络。
1. 图像分类预训练采用的技巧
1.1 Data augmentation
数据增广的目的在于增加输入图像的多样性,从而使得设计出来的目标检测模型对不同环境的图像具有更高的鲁棒性。
CutMix
论文:https://arxiv.org/abs/1905.04899v2
代码&#x

本文详细介绍了YOLO v4中用于图像分类预训练和目标检测的技巧,包括数据增广如CutMix和Mosaic,正则化方法Dropblock,以及优化边框回归损失函数的CIoU损失。YOLO v4通过这些技术提高了模型的鲁棒性和检测性能,特别是在处理小目标上的表现。此外,还探讨了网络归一化、自我对抗训练、动态迷你批量大小等训练策略,以及后处理方法DIoU-NMS。
订阅专栏 解锁全文
378

被折叠的 条评论
为什么被折叠?



