【目标检测-YOLO】YOLO_V2

YOLOv2在YOLOv1基础上进行了多项改进,包括引入Batch Normalization,使用Anchor Boxes,高分辨率分类器等,提升了目标检测的性能。通过聚类算法优化Anchor大小,直接预测边框坐标,以及多尺度训练,使得模型在保持高召回率的同时,提高了检测精度。此外,使用细粒度特征和动态输入尺寸进一步提升了模型的适应性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolov2 论文分为两部分:yolov2(Better, Faster)yolo9000(Stronger)。本文不讨论 yolo 9000内容。


1.yolov2(Better)

YOLOv2 相对v1改进在哪里?(消融研究)

 图中,红框和绿框并没有增加 mAP。

但是红框增加了 recall,69.5 mAP + 81% recall \rightarrow 69.2 mAP + 88% recall。recall增加,那么什么减少了呢?Precision 减少了,但是可以通过表中的后面的技巧优化结果。原论文说:recall 的提升代表yolov2有很大的提升空间。

绿框并没有提升太多 mAP(0.4),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值