ROI Pooling最早由Ross Girshick在2015年的论文fast rcnn中提出,是对ROI(Region of Interest)的Pooling操作,广泛应用于物体检测的研究领域。该操作旨在对输入特征图中不同大小的ROI利用池化方法获得固定大小的输出特征图。
ROI Pooling层的输入:
- 经过基础网络卷积和池化后的固定大小的特征图;
- 表示ROI信息的N*5维的矩阵,其中N表示ROI数目,纵坐标的第一列表示图片在输入特征图batch中的索引,之后四位是ROI的左上角和右下角坐标的信息。如下图表示一张图片中的ROI信息
ROI Pooling层的操作:
将特征图中的ROI缩放到预定义的大小,如7*7的尺寸,缩放的处理流程包括:将ROI均分为等大的子区域,其数量与网络层的输出大小相同;计算每个子区域中的最大值或平均值&#