(十七)权益证券估值模型:股息/现金流折现法、市盈率法

    普通股的估值方法主要有股息/现金流折现模型(统称为现值法)和市盈率法。第一种方法根据公司是否支付股息来选择;市盈率法需要分析投资者愿意为被估的盈利投入资金的倍数,需要估计公司未来的股息和盈利。此部分内容在python上的应用比较简单,敲好公式即可。

一、股息/现金流折现模型

1、零增长模型

在这里插入图片描述

2、稳定增长模型

在这里插入图片描述
  例1:上一期A公司股票股利为0.6元/股,且预期股利每年以10%的速度稳定增长,而A公司股票每年应得的收益率为12%,求A公司股票的内在价值:

D0=0.6;g=0.1;k=0.12
V=D0*(1+g)/(k-g);V
Out[1]: 33.00000000000002
3、多阶段增长模型

在这里插入图片描述
  例2:B公司近几年的股利发放情况为(单位元/股):2016年0.09,2017年0.12,2018年0.13,2019年0.15,2020年预计0.18。平均股利增长率约为18.64%。假定这种高增长在2020年消失并稳定在2.5%。2015年的β=0.78,资本市场的风险溢价为2.11%,Rf=2.51%,求B公司股票在2015年的估值:

import pandas as pd
t=pd.Series([1,2,3,4,5])
d=pd.Series([0.09,0.12,0.13,0.15,0.18])
k=0.0251+0.78*0.0211;g=0.025
x=sum(d/(1+k)**t)
y=0.18*(1+g)/(k-g)/(1+k)**5
v=x+y;v
Out[2]: 9.676527685576477
4、现金流定价模型

在这里插入图片描述
  例3:C公司2018年自由现金流为600万元,目标资本结构为资产:负债=1:4,现公司负债的市场价值为1200万元,现有200万股股票在外流通,股票投资者必要收益率为16%,负债成本为8%,税率为25%,预计C公司长期自由现金流增长率为5%,现在2019年股价为30元,是否合理?

g=0.05;ke=0.16;kd=0.08;t=0.25
FCFF1=600*(1+g)
WACC=4/5*ke+1/5*kd*(1-t)
v=FCFF1/(WACC-g)#求的是2019年,无需折现
ve=v-1200
p=ve/200;p
Out[3]: 28.999999999999996#小于30,因此股票被高估

二、市盈率法

在这里插入图片描述
  例4:市场普遍认为某公司的股权收益率为9%,β=1.25,再投资率为2/3。今年的每股收益为6元(刚发完),大家认为明年的市场收益率为14%,目前国库券收益率为6%,求该股票的增长机会现值和市盈率:

ROE=0.09;beta=1.25;b=2/3
e=6;rm=0.14;rf=0.06
k=rf+beta*(rm-rf)
g=ROE*b;p0=6*(1-b)/(k-g)
PVGO=p0-e/k
PE=p0/e
print(PVGO,PE)#ROE<k,所以PVGO为负

-17.5 3.333333333333332
大学老师要我们学习郭永清老师的《财务报表分析与股票估值》这本书,布置了最后两章的作业, 对郭永清老师的《财务报表分析与股票估值》这本书内容的实现 注意事项 代码是基于《财务报表分析与股票估值》的,其中自由现金流的口径与大众认知略有出入,建议使用前先阅读该书第14、15章; 本人非计算机专业,模型代码可能存在部分错误; 银行股暂时无估值,因为其财报形式和其他种类公司相比略有不同; 数据采用的是邢不行老师整理的股票历史日线数据和新浪财务数据; 本人非财务、会计专业,尽管过程中请教了CPA大神,但财务数据口径依然可能存在问题。 DCF介绍 自由现金流贴现是绝对估值的一种,理论基础是现值原理:任何资产的价值都等于其预期未来全部现金流的现值总和,对公司而言就是自由现金流。 由于准确预测未来所有自由现金流是不可能的,而且股票并没有固定的生命周期,因此将模型简化为以下四种: $$ \begin{aligned} &零增长模型:V=\frac{FCF}{WACC}\ &不变增长模型:V=\frac{FCF(1+g)}{WACC-g}\ &两阶段模型:V=\sum_{t=1}^n\frac{{FCF}t}{(1+WACC)^t}+\frac{TV}{(1+WACC)^n},\ \ 其中TV=\frac{FCF_n(1+g_2)}{WACC-g_2}\ &三阶段模型:V=\sum{t=1}^n\frac{{FCF}0(1+g_1)}{(1+WACC)^t}+\sum{t=n+1}^m\frac{{FCF}n(1+g_2)}{(1+WACC)^t}+\frac{FCF{n+m}(1+g_3)}{(WACC-g_3)(1+WACC)^{n+m}}\ \end{aligned} $$ 零增长模型适用于成熟稳定、没有增长的公司,每年的自由现金流也保持在一个稳定的金额水平,类似于永续年金;如果该类公司的自由现金流全部用于发放股利现金,那么其得出的结果与股利贴现模型非常接近。 不变增长模型适用于成熟的公司,未来的自由现金流以非常缓慢的速度增长。 在两阶段模型中,投资者的预期回报WACC至少要高于总体的经济增长率;不变增长率g2通常小于WACC,反之,意味着很长时间以后公司的规模将超过总体经济规模。 在三阶段模型中,假设所有的公司经历三个阶段:成长阶段、过渡阶段和稳定阶段。三个阶段的成长率由高到低,稳定阶段保持较低增长率的不变增长。 具体计算步骤: 计算自由现金流并依据相应的方折现($\star\star\star\star\star$) 计算股权价值= 折现后的自由现金流+金融资产+长期股权投资-公司债务 计算少数股东比例 归属于上市公司股东的价值=股权价值$\times$(1-少数股东比例) 每股内在价值=归属于上市公司股东的价值/股本 其中, 经营资产自由现金流=公司维持原有生产经营规模前提下的增量现金流入=经营活动现金流量净额-保全性资本支出=经营活动现金流量净额-固定资产折旧-无形资产和长期待摊费用摊销-处置长期资产的损失 $WACC=k_d\times\frac{D}{D+E}\times(1-t)+k_e\times\frac{E}{D+E}$。其中债务资本成本率=债务资本总额/债务资本平均金额$\times$100%=(财务费用+汇兑收益)/(期初债务资本+期末债务资本)/2;股权资本成本率应该高于同期的国债利率,加上股票投资的风险溢价,我们普遍设置为9%;t为公司实际所得税税率=1-净利润/税前利润。 公司债务=有息债务 少数股东比例=$\frac{少数股东权益}{股东权益合计}$ 股本=市值/股价
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值