买价
P
0
P_0
P0
卖价
P
1
P_1
P1
分红
D
i
v
i
d
e
n
d
Dividend
Dividend
- 预期收益包括两部分:
- 利息收益率 dividend yield
- 资本利得 capital appreciation
预期收益率的公式
e
x
p
e
c
t
e
d
r
e
t
u
r
n
=
D
i
v
i
d
e
n
d
+
(
P
1
−
P
0
)
P
0
expected\ return = \frac {Dividend + (P1 - P0)}{P0}
expected return=P0Dividend+(P1−P0)
其中
D
i
v
i
d
e
n
d
P
0
\frac {Dividend}{P0}
P0Dividend为利息收益率,
P
1
−
P
0
P
0
\frac {P1-P0}{P0}
P0P1−P0为资本利得
P
0
=
D
i
v
1
(
1
+
r
)
1
+
D
i
v
2
(
1
+
r
)
2
+
…
+
D
i
v
t
+
P
t
(
1
+
r
)
t
P_0=\frac {Div_1} {(1+r)^1} +\frac {Div_2} {(1+r)^2} + …+ \frac {Div_t + P_t} {(1+r)^t}
P0=(1+r)1Div1+(1+r)2Div2+…+(1+r)tDivt+Pt
r
r
r为预期收益率,
D
i
v
t
Div_t
Divt为第t年末发放的股利,
P
t
P_t
Pt为预期第t年末的股价
例:目前的预测是XYZ公司在接下来的三年里将支付3美元,3.24美元和3.50美元的股息。在三年结束时,你将以94.48美元的市价卖出你的股票。给定12%的预期回报,股票的价格是多少?
根据股利折现模型,股票的现值 P 0 = 3 ( 1 + . 12 ) 1 + 3.24 ( 1 + . 12 ) 2 + 3.5 + 94.48 ( 1 + . 12 ) 3 = 75 P_0=\frac{3} {(1+.12)^1}+\frac{3.24} {(1+.12)^2}+\frac{3.5+94.48} {(1+.12)^3} = 75 P0=(1+.12)13+(1+.12)23.24+(1+.12)33.5+94.48=75
假设永久持有股票,则最后的Pt可以被忽略 lim t → ∞ P t ( 1 + r ) t = 0 \lim_{t \to \infty}\frac{P_t}{(1+r)^t} = 0 limt→∞(1+r)tPt=0
则股票的现值只取决于利息
1. no growth DDM, 股利不变, 简化公式为 P 0 = D i v 1 r P_0= \frac {Div_1} {r} P0=rDiv1
对于原始折现模型,去掉$P_t$后,若$Div_t$不变都是$Div_1$,则变成一个等比数列求和的形式
P 0 = D i v ∗ ∑ i = 1 t ( 1 1 + r ) i = D i v ∗ 1 1 + r ∗ ( 1 − ( 1 1 + r ) t ) 1 − 1 1 + r = D i v ∗ 1 − ( 1 1 + r ) t r P_0=Div*\sum _ { i = 1 } ^ { t } (\frac{1}{1+r})^i = Div*\frac{\frac{1}{1+r}*(1-(\frac{1}{1+r})^t)} {1-\frac{1}{1+r}} = Div*\frac{1-(\frac{1}{1+r})^t}{r} P0=Div∗∑i=1t(1+r1)i=Div∗1−1+r11+r1∗(1−(1+r1)t)=Div∗r1−(1+r1)t
当t趋近于无穷时,分子 1 − ( 1 1 + r ) t 1-(\frac{1}{1+r})^t 1−(1+r1)t趋近1,就变成了 P 0 = D i v r P_0= \frac {Div} {r} P0=rDiv
2. constant growth DDM,股利持续增长 P 0 = D i v 1 r − g P_0= \frac {Div_1} {r-g} P0=r−gDiv1

注意第一年末是
D
i
v
1
Div_1
Div1,其折现值为
D
i
v
1
1
+
r
\frac{Div_1}{1+r}
1+rDiv1
若股利增长比率为g,则第t年末的折现值为
D
i
v
1
1
+
r
∗
(
1
+
g
1
+
r
)
t
\frac{Div_1}{1+r}*(\frac{1+g}{1+r})^t
1+rDiv1∗(1+r1+g)t。同样这是一个等比数列求和的形式:
P
0
=
D
i
v
1
1
+
r
∗
∑
i
=
0
t
(
1
+
g
1
+
r
)
i
=
D
i
v
1
1
+
r
∗
1
∗
(
1
−
(
1
+
g
1
+
r
)
t
+
1
)
)
1
−
1
+
g
1
+
r
=
D
i
v
∗
1
−
(
1
+
g
1
+
r
)
t
+
1
r
−
g
P_0= \frac{Div_1}{1+r}*\sum _ { i = 0 } ^ { t } (\frac{1+g}{1+r})^i = \frac{Div_1}{1+r}*\frac{1*(1-(\frac{1+g}{1+r})^{t+1}))} {1-\frac{1+g}{1+r}} = Div*\frac{1-(\frac{1+g}{1+r})^{t+1}}{r-g}
P0=1+rDiv1∗∑i=0t(1+r1+g)i=1+rDiv1∗1−1+r1+g1∗(1−(1+r1+g)t+1))=Div∗r−g1−(1+r1+g)t+1
t趋近于无穷时,
1
−
(
1
+
g
1
+
r
)
t
+
1
1-(\frac{1+g}{1+r})^{t+1}
1−(1+r1+g)t+1趋近于1,则
P
0
=
D
i
v
1
r
−
g
P_0= \frac {Div_1} {r-g}
P0=r−gDiv1
这个g = sustainable growth rate 如何确定?
不将ROE全用于发放股利,留存一部分用于企业发展(plowback再投资),我们假设再投资的部分收益(ROE * plowback ratio)使下一年的股利增长,这就是②中的g
股利的增长比率=收益率ROE*股票再投资率plowback
g
=
s
u
s
t
a
i
n
a
b
l
e
g
r
o
w
t
h
r
a
t
e
=
R
O
E
∗
p
l
o
w
b
a
c
k
r
a
t
i
o
g=sustainable\;growth\;rate=ROE*plowback\;ratio
g=sustainablegrowthrate=ROE∗plowbackratio
求 PVGO (Present Value of Growth Opportunities增长机会价值)
即 进行再投资所得的
P
0
P_0
P0 - 不考虑再投资的鼓励增长率g所得的
P
0
P_0
P0,这两者之差即为增长机会价值,当然该值大于0时,对于股东才有意义(再投资的收益更高)
例:公司的净资产回报率为11.5%,每股账面价值为11.2,计划留存35%的利润,要求回报率为6.6%,则股票价值为多少?再投资价值PVGO为多少?
每 股 收 益 E P S = 11.2 ∗ . 115 = 1.288 每股收益 EPS = 11.2* .115 =1.288 每股收益EPS=11.2∗.115=1.288
增 长 率 g = . 35 ∗ . 115 = . 04 增长率g= .35*.115=.04 增长率g=.35∗.115=.04
- 由于EPS中有35%的部分留存,剩下的65%用于发股息:
第 一 年 的 收 益 D i v 1 = E P S ∗ ( 1 − . 35 ) = 0.84 第一年的收益Div_1 = EPS*(1- .35) = 0.84 第一年的收益Div1=EPS∗(1−.35)=0.84
P 0 = D i v 1 r − g = 0.84 0.066 − 0.04 = 32.31 P_0 = \frac{Div_1} {r-g}=\frac{0.84}{0.066-0.04}=32.31 P0=r−gDiv1=0.066−0.040.84=32.31
- 若公司不进行再投资,则 P 0 = E P S r = 1.288 0.066 = 19.52 P_0=\frac{EPS}{r}=\frac{1.288}{0.066} =19.52 P0=rEPS=0.0661.288=19.52
- 则再投资价值 PVGO = 32.31 - 19.52 = 12.79
3. non-constant growth非固定股利
若前x年的收益不是固定的,则根据DDM公式求这x年的股利的现值,对于x年后面的股利,若是固定股利,可使用①的公式;若是可持续增长的股利,使用②中的公式
注意:x年后面的股利用公式所求的“现值”是x年末的现值,还需要再除以 ( 1 + r ) x (1+r)^x (1+r)x得到真正的今天的现值