华为昇腾Ascend系列 之 05 安装docker环境运行llama大模型进行推理(教程含源码Ascend 910、Ascend 910B)

本文提供了一步一步的教程,讲解如何在华为昇腾910硬件环境下,安装docker并配置运行llama大模型进行推理。内容涵盖驱动固件和CANN软件安装,docker的配置与测试,以及模型的执行流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实战需求

本文主要向用户介绍基于Ascend 910 推理卡,快速完成昇腾NPU(Neural-Network Processing Unit,神经网络处理器单元)驱动固件、CANN(Compute Architecture for Neural Networks,AI异构计算架构)软件的安装,实现推理业务的上线。

当前华为昇腾 910B 能力已经基本做到可对标英伟达 A100。华为轮值董事长胡厚崑在昇腾人工智能产业高峰论坛宣布,昇腾 AI 集群解决方案,已经在全国 25个城市的人工智能计算中心及重点实验室得到应用,其中有 7 个,包括武汉、西安等,成为科技部首批认可的“国家新一代人工智能公共算力开放创新平台”。
昇腾 AI 训推一体机应用框架

华为与英伟达 AI 性能对比
AI 训练开发一体机解决方案

<think>好的,我现在需要帮助用户解决如何使用Docker部署基于昇腾910B的大模型的问题。首先,我得回忆一下昇腾910B的相关知识。昇腾是华为的AI处理器,910B应该是其中一款型号,常用于深度学习和大模型训练。Docker部署的话,通常需要配置合适的环境,包括驱动、固件、CANN工具包等。 用户提到了参考引用里的内容,特别是引用[2]和引用[3]。引用[2]提供了加载昇腾NPU环境变量和安装Python库的命令,这可能是在配置开发环境时的步骤。引用[3]看起来是昇腾社区的链接,可能包驱动和固件的下载信息。 首先,部署Docker需要基础镜像,可能华为提供了包昇腾支持的Docker镜像。然后,环境配置部分需要安装CANN工具包,设置环境变量,以及安装必要的Python库,如torch_npu、transformers等,这部分引用[2]已经提到。 接下来,用户可能需要构建自定义的Docker镜像,编写Dockerfile,包括基础镜像、安装依赖、复制代码、设置启动命令等步骤。此外,运行容器时需要挂载驱动和设备,确保容器能访问NPU设备,这可能涉及到--device参数和卷挂载。 验证部分需要检查CANN版本和NPU状态,可能用到npu-smi命令。同时,用户可能需要下载预训练的大模型,比如通过Hugging Face,并在代码中加载模型,使用NPU作为设备。 可能遇到的问题包括驱动版本不匹配、Docker权限问题、环境变量设置错误等,需要指导用户检查这些部分。 最后,生成的相关问题可能涉及昇腾的其他应用、性能优化、与其他框架的对比,以及常见错误的解决。需要确保这些问题与用户的需求相关,并且能够帮助他们进一步深入。 现在需要将上述思考整理成结构化的步骤,确保引用正确,并按照用户的要求使用中文,正确使用LaTeX格式,比如环境变量设置部分用行内公式,独立命令用代码块。同时,要检查引用标记的位置,自然地在相关步骤末尾添加[^2]或[^3]。</think>### 使用Docker部署基于昇腾910B的大模型教程 #### 1. **昇腾开发环境准备** - **安装驱动与固件** 访问昇腾社区下载与昇腾910B匹配的驱动和固件,确保NPU硬件可被系统识别。 - **安装CANN工具包** CANNAscend Computing Toolkit是昇腾AI处理器的异构计算架构,需安装与硬件兼容的版本。例如: ```bash wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/8.0.RC2.alpha002/Ascend-cann-toolkit_8.0.RC2.alpha002_linux-aarch64.run ./Ascend-cann-toolkit_*.run --install ``` #### 2. **配置Docker环境** - **获取昇腾基础镜像** 使用华为提供的昇腾Docker镜像作为基础环境: ```bash docker pull ascendhub.huawei.com/public-ascendhub/ascend-base:22.0.2 ``` - **编写Dockerfile** 创建自定义镜像,集成CANN工具和Python依赖: ```dockerfile FROM ascendhub.huawei.com/public-ascendhub/ascend-base:22.0.2 RUN source /usr/local/Ascend/ascend-toolkit/set_env.sh \ && pip install torch_npu transformers datasets accelerate peft # 引用[2] COPY ./app /app CMD ["python", "/app/main.py"] ``` #### 3. **运行容器并挂载设备** - **启动容器时绑定NPU设备** 通过`--device`参数将宿主机的NPU设备映射到容器内: ```bash docker run -it --rm \ --device=/dev/davinci0 \ # 假设NPU设备号为0 --volume /usr/local/Ascend/driver:/usr/local/Ascend/driver \ my-ascend-image ``` #### 4. **验证NPU可用性** - **在容器内执行检测命令** 使用`npu-smi`工具查看NPU状态: ```bash npu-smi info ``` - **测试PyTorch与NPU集成** 运行Python代码验证`torch_npu`是否正常: ```python import torch x = torch.randn(2, 2).npu() # 将张量迁移至NPU print(x.device) # 应输出npu:0 ``` #### 5. **部署大模型示例** - **加载Hugging Face模型** 使用昇腾适配的Transformers库加载模型: ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("model_name").to("npu") ``` - **优化计算流程** 结合`torch_npu`的混合精度和算子优化提升性能[^2]。 --- ### 常见问题解决 - **NPU设备未识别** 检查`/dev/davinci*`设备权限,确保容器用户有访问权限。 - **CANN版本冲突** 确保宿主机的驱动版本与容器内的CANN工具包版本一致。 - **PyTorch报错** 使用`import torch_npu`后需调用`torch.npu.set_device(0)`初始化NPU上下文。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值