使用Qiskit学习量子计算_4数学基础(上)

本文介绍了量子计算中的基本数学概念——线性代数,包括向量、向量空间、矩阵运算以及线性相关和基的概念。线性代数在量子计算中起到描述语言的作用,向量和矩阵在量子门操作中扮演重要角色,而基则用于表示量子状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节主要内容

  • 概述
  • 向量和向量空间
  • 矩阵和矩阵运算
  • 线性相关和基

概述

线性代数是量子计算的描述语言。因此,对线性代数所基于的基本数学概念有一个很好的理解,有助于得出量子计算中看到的许多令人惊奇和有趣的结构。本部分的目的是建立入门级线性代数知识的基础。

向量和向量空间

首先,将讨论量子计算中最重要的数学概念之一:矢量。

通常,向量 ∣ v ⟩ \left| \text{v} \right\rangle v 被定义为向量空间集合中的元素。一个更直观的定义是向量“是具有方向和幅度的数学量”。例如,考虑向量 ( 3 5 ) \left( \begin{matrix} \text{3} \\ \text{5} \\ \end{matrix} \right) (35) ,作图显示如下:

from matplotlib import pyplot as plt
import numpy as np
from qiskit import *
from qiskit.visualization import plot_bloch_vector

plt.figure()
ax = plt.gca()
ax.quiver([3], [5], angles='xy', scale_units='xy', scale=1)
ax.set_xlim([-1, 10])
ax.set_ylim([-1, 10])
plt.draw()
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FPKxRJAq-1592614269793)(output_1_0.png)]

在量子计算中,经常处理状态向量,可以使用Bloch球将其可视化。例如,代表量子系统状态的向量可能看起来像如下所示的箭头,被包围在Bloch球内部。所谓Bloch球的即“状态空间”,是状态向量可以“指向”的所有可能点:

plot_bloch_vector([1, 0, 0])

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PiqUlmGI-1592614269798)(output_3_0.png)]

上图中表示的状态是 ∣ 0 ⟩ |0\rangle 0 ∣ 1 ⟩ |1\rangle 1 的叠加态。bloch球上的状态允许旋转到球表面的任何位置,不同的位置代表不同的状态。

现在来看向量的正式定义,即向量是向量空间的元素。一个向量空间 V V V 是域 F F F上一组向量的集合,且需要满足两个条件成立。

  • 两个向量的向量加仍在该集合中,即 ∣ a ⟩ ,   ∣ b ⟩   ∈   V |a\rangle, \ |b\rangle \ \in \ V a, b  V ∣ a ⟩   +   ∣ b ⟩   =   ∣ c ⟩ |a\rangle \ + \ |b\rangle \ = \ |c\rangle a + b = c仍在 V V V
  • 标量乘法,对 ∣ a ⟩   ∈   V |a\rangle \ \in \ V a  V 和某个 n   ∈   F n \ \in \ F n  F,其乘积 n ∣ a ⟩ n|a\rangle na仍在 V V V.

现在,我们将通过一个简单示例来阐明上述的定义。让我们证明在域 R \mathbb {R} R上的集合 R 2 \mathbb {R} ^ 2 R2是一个向量空间。首先,


( x 1 y 1 )   +   ( x 2 y 2 )   =   ( x 1   +   x 2 y 1   +   y 2 ) \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \ + \ \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \ = \ \begin{pmatrix} x_1 \ + \ x_2 \\ y_1 \ + \ y_2 \end{pmatrix} (x1y1) + (x2y2) = (x1 + x2y1 + y2)


因为两个实数之和仍为实数,所上述式子的运算结果仍然在 R 2 \mathbb{R}^2 R2中。同时


n ∣ v ⟩   =   ( n x n y )   ∈   V      ∀ n   ∈   R n |v\rangle \ = \ \begin{pmatrix} nx \\ ny \end{pmatrix} \ \in \ V \ \ \ \ \forall n \ \in \ \mathbb{R} nv = (nxny)  V    n  R


因为两个实数之和积仍为实数,所上述式子的运算结果也在 R 2 \mathbb{R}^2 R2中。因此,在域 R \mathbb {R} R上的集合 R 2 \mathbb {R} ^ 2 R2是一个向量空间。

矩阵和矩阵运算

现在来看另一个重要的概念矩阵。


一个简单的矩阵示例如下:


M   =   ( 1 − 2 3 1 5 i 0 1   +   i 7 − 4 ) M \ = \ \begin{pmatrix} 1 & -2 & 3 \\ 1 & 5i & 0 \\ 1 \ + \ i & 7 & -4 \end{pmatrix} M = 111 + i25i7304


矩阵运算中,矩阵的乘法非常重要,也很简单,不会的话自己百度。这里给一个示例,


( 2 0 5 − 1 ) ( − 3 1 2 1 )   =   ( ( 2 ) ( − 3 ) + ( 0 ) ( 2 ) ( 2 ) ( 1 )   +   ( 0 ) ( 1 ) ( 5 ) ( − 3 ) + ( − 1 ) ( 2 ) ( 5 ) ( 1 )   +   ( − 1 ) ( 1 ) )   =   ( − 6 2 −

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值