最大似然估计、KL散度和交叉熵

深度学习建立在概率论的基础上,本质是估计数据集(具有随机误差)的分布,即定义模型后进行参数估计。

极大似然估计

极大似然估计是点估计的一种,我们定义一个似然函数来作为对真实分布的估计,取似然程度最大的一组参数作为估计值。

给定分布 p ( x ; θ ) p(x; \boldsymbol{\theta}) p(x;θ),从中取一组样本 X 1 , X 2 , X 3 , . . . , X n X_1, X_2, X_3, ..., X_n X1,X2,X3,...,Xn,则样本的 p d f pdf pdf
L ( θ ; X 1 , X 2 , X 3 , . . . , X n ) = ∏ i n p ( x i ; θ ) L(\boldsymbol{\theta};X_1, X_2, X_3, ..., X_n) = \prod_{i}^{n} p(x_i;\boldsymbol{\theta}) L(θ;X1,X2,X3,...,Xn)=inp(xi;θ)
其中,参数 θ \boldsymbol{\theta} θ未知, L L L即为似然函数

该问题也就转化为,在观测到一组样本 X 1 , X 2 , X 3 , . . . , X n X_1, X_2, X_3, ..., X_n X1,X2,X3,...,Xn时, θ \boldsymbol{\theta} θ取什么值会使样本出现的可能性最大,也就是求 L L L最大时的参数 θ \boldsymbol{\theta} θ值。
arg ⁡ max ⁡ θ ∏ i n p ( x i ; θ ) \arg\max_{\theta}\prod_{i}^{n} p(x_i;\boldsymbol{\theta}) argθmaxinp(xi;θ)
将上述求积转为求和的对数,以便于计算
arg ⁡ max ⁡ θ ∑ i n log ⁡ p ( x i ; θ ) = arg ⁡ min ⁡ θ − ∑ i n log ⁡ p ( x i ; θ ) \arg\max_{\theta}\sum_{i}^{n}\log{p(x_i;\boldsymbol{\theta})} = \arg\min_{\theta} - \sum_{i}^{n}\log{p(x_i;\boldsymbol{\theta})} argθmaxinlogp(xi;θ)=argθmininlogp(xi;θ)

KL散度 & 交叉熵

从另一个角度来讲,如何衡量 p θ p_{\theta} pθ p θ ^ p_{\hat\theta} pθ^的差异呢?则可以使用f-divergence中的KL散度来进行衡量。

KL散度定义为
D K L ( p θ ∣ ∣ p θ ^ ) = ∑ i n p θ ( x i ) log ⁡ p θ ( x i ) p θ ^ ( x i ) = ∑ i n p θ ( x i ) log ⁡ p θ ( x i ) − ∑ i n p θ ( x i ) log ⁡ p θ ^ ( x i ) D_{KL}(p_{\theta}||p_{\hat\theta}) = \sum_i^n p_{\theta}(x_i) \log \frac{p_{\theta}(x_i)}{p_{\hat\theta}(x_i)} = \sum_i^n p_{\theta}(x_i) \log {p_{\theta}(x_i)} - \sum_i^np_{\theta}(x_i) \log {p_{\hat\theta}(x_i)} DKL(pθ∣∣pθ^)=inpθ(xi)logpθ^(xi)pθ(xi)=inpθ(xi)logpθ(xi)inpθ(xi)logpθ^(xi)
其中,
∑ i n p θ ( x i ) log ⁡ p θ ( x i ) \sum_i^n p_{\theta}(x_i) \log {p_{\theta}}(x_i) inpθ(xi)logpθ(xi)为常量。

因此,问题就转化为
arg ⁡ min ⁡ − ∑ i n p θ ( x i ) log ⁡ p θ ^ ( x i ) = arg ⁡ min ⁡ θ − E x log ⁡ p θ ^ ( x ) \arg \min - \sum_i^np_{\theta}(x_i) \log {p_{\hat\theta}}(x_i) = \arg \min_{\boldsymbol\theta} -E_x\log{p_{\hat\theta}}(\boldsymbol{x}) argmininpθ(xi)logpθ^(xi)=argθminExlogpθ^(x)
该式子也是交叉熵

结论

根据大数定理
∑ i n log ⁡ p ( x i ; θ ) = E x log ⁡ p θ ^ ( x ) \sum_{i}^{n}\log{p(x_i;\boldsymbol{\theta})} = E_x\log{p_{\hat\theta}}(\boldsymbol{x}) inlogp(xi;θ)=Exlogpθ^(x)

也就是在本问题中,求极大似然估计、最小化KL散度和最小化交叉熵等价


大数定理

X 1 , X 2 , X 3 . . . X_1, X_2, X_3... X1,X2,X3...为独立同分布(iid)的随机变量,且 E ( X ) = μ , V a r X = σ 2 < ∞ E(X)=\mu, Var X = \sigma^2 < \infty E(X)=μ,VarX=σ2<,定义 X n ˉ = ∑ i n X i \bar{X_n} = \sum_i^n X_i Xnˉ=inXi,则有
lim ⁡ n → ∞ P ( ∣ X n ˉ − μ ∣ > ϵ ) = 0 \lim_{n\to\infty}P(|\bar{X_n}-\mu| > \epsilon) = 0 nlimP(Xnˉμ>ϵ)=0

f-divergence(f-散度)

在概率论中,f散度是用来测量两个分布P和Q之间差异的函数,定义为
D f ( P ∣ ∣ Q ) = ∫ f ( d P d Q ) d Q D_f(P||Q) = \int f(\frac{dP}{dQ})dQ Df(P∣∣Q)=f(dQdP)dQ
若P和Q可导
D f ( P ∣ ∣ Q ) = ∫ f ( ( p ( x ) q ( x ) ) q ( x ) d x D_f(P||Q) = \int f(\frac{(p(x)}{q(x)}) q(x)dx Df(P∣∣Q)=f(q(x)(p(x))q(x)dx
f ( t ) f(t) f(t)取不同的函数时,即为不同的散度,KL散度取 f ( t ) = t log ⁡ ( t ) f(t) = t\log(t) f(t)=tlog(t)
D K L ( P ∣ ∣ Q ) = ∫ p ( x ) ( p ( x ) q ( x ) d x D_{KL}(P||Q) = \int p(x)\frac{(p(x)}{q(x)}dx DKL(P∣∣Q)=p(x)q(x)(p(x)dx

熵、KL散度和交叉熵

  • 熵: H ( X ) = − ∑ i n p ( x i ) log ⁡ p ( x i ) H(X)=-\sum_i^n p(x_i)\log p(x_i) H(X)=inp(xi)logp(xi),表示不确定程度,越不确定值越大
  • KL散度(相对熵): D K L ( p θ ∣ ∣ p θ ^ ) = ∑ i n p θ ( x i ) log ⁡ p θ ( x i ) − ∑ i n p θ ( x i ) log ⁡ p θ ^ ( x i ) D_{KL}(p_{\theta}||p_{\hat\theta}) = \sum_i^n p_{\theta}(x_i) \log {p_{\theta}(x_i)} - \sum_i^np_{\theta}(x_i) \log {p_{\hat\theta}(x_i)} DKL(pθ∣∣pθ^)=inpθ(xi)logpθ(xi)inpθ(xi)logpθ^(xi)
  • 交叉熵: C E ( X ) = − ∑ i n p θ ( x i ) log ⁡ p θ ^ ( x i ) CE(X) = - \sum_i^np_{\theta}(x_i) \log {p_{\hat\theta}(x_i)} CE(X)=inpθ(xi)logpθ^(xi)
    从定义里可以看出,当熵为常量时,KL散度和交叉熵等价。
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
KL散度交叉熵是在机器学习中用于比较两个概率分布之间相似性的概念,但在一些方面它们也有所不同。KL散度用于衡量两个概率分布之间的差异,而交叉熵则用于衡量模型预测和真实标签之间的差异。 具体来说,KL散度衡量的是从一个概率分布到另一个概率分布的信息损失。它是非对称的,即KL(P||Q)不等于KL(Q||P)。KL散度的值越小,表示两个概率分布越相似。 交叉熵是在给定真实标签的情况下,衡量模型预测与真实标签之间的差异。它是对数损失函数的一种形式,用于评估模型的性能。交叉熵的值越小,表示模型的预测越接近真实标签。 总结来说,KL散度用于比较两个概率分布之间的差异,而交叉熵用于衡量模型预测和真实标签之间的差异。它们在使用和应用上有所区别,但都在机器学习中有广泛的应用。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *3* [KL散度交叉熵的对比介绍](https://blog.csdn.net/qq_33431368/article/details/130397363)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [KL散度交叉熵](https://blog.csdn.net/Allenalex/article/details/103443060)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值