keras学习笔记(4)—损失函数

本文是关于Keras中常用的损失函数的学习笔记,详细介绍了mean_squared_error, mean_absolute_error, mean_absolute_percentage_error以及categorical_crossentropy和binary_crossentropy等的算法原理和应用场景,帮助理解如何在不同问题中选择合适的损失函数。" 44085753,4840745,修复错误:error while loading shared libraries: libc.so.6,"['Linux系统', '系统修复', '命令行工具', '文件系统']
摘要由CSDN通过智能技术生成
一、损失函数类型
二、算法详解
2.1 mean_squared_error(mse)—平方误差

计算公式:

mse=1mi=1m(y(i)yˆ(i)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值