- 可微性质的解释 – 可微性及其在机器学习中的重要性
- 定义
- 意义
- 在该点或该区间内的变化是 平滑 的;可以求取极值
- 通过梯度下降等基于导数的优化算法来最小化目标函数(损失函数)。梯度下降法依赖于可微性。
- 凸函数:它的局部最小值就是全局最小值。
- 为什么在机器学习中需要可微性?
- 使用梯度下降进行优化 – 计算目标函数对参数的导数
- 可微性代表能够求导,并因此调整参数 θ \theta θ – 能够求导怎么就代表着可以调整参数了呢?
- 2.3 参数调整的过程
- θ : = θ − α ∇ J ( θ ) \theta := \theta - \alpha \nabla J(\theta) θ:=θ−α∇J(θ)
- 可微性与均方误差(MSE)的证明 – 损失函数不仅仅只有MSE,但是可微性是选择损失函数的重要考虑因素之一。MSE是可微的。
- 可微性让我们能够通过计算损失函数的梯度来调整模型参数
θ - 3.4 MSE 的定义与可微性证明
- 可微性让我们能够通过计算损失函数的梯度来调整模型参数
1. 可微性及其在机器学习中的重要性
1.1 可微的定义
对于一个函数 f ( x ) f(x) f(x),如果在某个点 x 0 x_0 x0附近,函数的变化趋势可以用一个线性函数(即导数)来近似,则我们说这个函数在 x 0 x_0 x0 点 可微。更形式化地,函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可微意味着存在一个有限的导数:
f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} f′(x0)=h→0limhf(x0+h)−f(x0)
如果这个极限存在且是有限值,那么 f ( x ) f(x) f(x)在 x 0 x_0 x0处是 可微的,这个极限就是函数在 x 0 x_0 x0 处的 导数。
直观理解:
- 如果一个函数在某个点是 可微 的,那说明在该点附近,函数的变化是平滑的、没有尖锐的转折。也就是说,我们可以在该点画出函数的切线,切线的斜率就是该点的导数。
- 如果函数在某个点是 不可微 的,那说明在该点可能有不连续、尖锐拐角(例如绝对值函数 ∣ x ∣ |x| ∣x∣ 在 x = 0 x=0 x=0 处的尖角),或者变化非常剧烈。
1.2 可微的意义
a. 平滑性
函数可微意味着它在该点或该区间内的变化是 平滑 的,能够用一个切线近似函数在该点附近的变化。这在优化问题中非常重要。比如,在机器学习中,我们常常需要求解函数的极值,而这是通过计算函数的导数来实现的。如果一个函数不可微,那么导数就无法计算,导致优化过程无法顺利进行。
b. 优化中的应用
在机器学习模型的训练过程中,我们需要最小化目标函数(损失函数),这通常是通过梯度下降等基于导数的优化算法来实现的。梯度下降法依赖于可微性,因为我们需要计算损失函数的导数(或梯度)来调整模型的参数,使得损失函数最小化。
如果一个函数不可微,那么导数(梯度)就无法计算,也就无法使用梯度下降等基于导数的算法。因此,在机器学习中,设计可微的损失函数是非常重要的。
c. 函数的凸性
通常,机器学习中的损失函数(如均方误差)不仅是可微的,而且是凸的。
凸函数的一个重要特性是:它的局部最小值就是全局最小值。
这使得基于梯度的优化算法(如梯度下降法)可以快速收敛到最优解。
1.3 可微与不可微的例子
可微的例子:
- 线性函数 ( f(x) = 2x + 1 ) 在任意点都是可微的,导数是 2。
- 二次函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 也是在任意点都可微的,导数是 f ′ ( x ) = 2 x f'(x) = 2x f′(x)=2x。
不可微的例子:
- 绝对值函数 ( f(x) = |x| ) 在 ( x = 0 ) 处不可微,因为在该点有一个尖锐的转折,导数无法定义。具体来说:
- 当 ( x > 0 ) 时,( f(x) = x ),导数是 1。
- 当 ( x < 0 ) 时,( f(x) = -x ),导数是 -1。
- 但是在 ( x = 0 ) 时,导数的左右极限不相等,因此导数不存在,函数不可微。
例子解释:
- 对于 ( f(x) = |x| ),在 ( x = 0 ) 附近,函数的图像是尖锐的拐角,左右两边的斜率(导数)不同。因此,这个函数在 ( x = 0 ) 处不可微。
1.4 为什么在机器学习中需要可微性?
在机器学习中,特别是使用梯度下降进行优化时,目标函数的可微性是至关重要的。梯度下降的基本步骤是:
- 计算目标函数(损失函数)对参数 θ \theta θ 的导数(梯度)。
- 使用导数信息来更新参数,使得损失函数逐步减小。
因此,可微性确保我们可以计算导数,从而使优化过程可以顺利进行。
例子:均方误差的可微性
均方误差(MSE)定义为:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 J(θ)=2m1i=1∑m(hθ(x(i))−y(i))2
这个函数是 可微的,因为它的平方项是一个光滑的函数。我们可以对其求导,进而使用梯度下降法进行优化。正是因为它的可微性,才能在训练模型时有效地调整参数 θ \theta θ ,让损失函数最小化。
1.5 可微性与连续性的关系
一个函数在某点可微,意味着它在该点也是 连续 的。但反过来,连续函数不一定是可微的。例如,绝对值函数 ( f(x) = |x| ) 在 ( x = 0 ) 处是连续的,但不可微。
总结
- 可微 意味着一个函数在某点可以进行微分,能够求出该点的导数。可微性反映了函数在该点附近的平滑程度。
- 在机器学习中,函数的可微性非常重要,尤其是在使用梯度下降等优化算法时,我们需要通过计算损失函数的导数来更新模型参数。
- 均方误差 是可微的,因为它的定义中包含平方项,具有良好的平滑性和可微性,适合用于基于梯度的优化方法。
2. 可微性代表能够求导,并因此调整参数 θ \theta θ
2.1 可微性和求导的关系
- 可微性 表示函数在某个点可以求导,也就是说该函数在这个点是光滑的,没有尖角、突变或不连续。
- 求导 的过程就是计算函数在某个点的导数,导数代表了函数在该点的变化率。导数为正,说明函数在该点是上升的;导数为负,说明函数在该点是下降的;导数为零,可能意味着在该点达到了极值(最大值或最小值)。
2.2 可微性在参数优化中的作用
在机器学习中,我们通常定义一个损失函数来衡量模型预测值和真实值之间的差距(如均方误差 MSE)。为了使模型的预测更加准确,我们希望最小化这个损失函数【当读到这里的时候,可以写一下那个推导过程】,而这个过程涉及到 调整模型的参数 θ \theta θ。
- 梯度下降法 是一种常用的优化算法,基于损失函数的导数(梯度)来更新参数 θ \theta θ。
- 导数 给出了损失函数在某点的变化率。通过计算损失函数对 θ \theta θ 的导数,我们可以知道在当前参数设置下,如何调整 θ \theta θ 才能减小损失。
因此,正是因为损失函数 可微,我们才能通过 计算导数(梯度) 来更新参数,使损失函数逐步减小,从而找到使得损失最小的最优参数 θ \theta θ。
2.3 参数调整的过程
假设损失函数 J ( θ ) J(\theta) J(θ) 是可微的,那么我们可以对 J ( θ ) J(\theta) J(θ) 求导,得到梯度 ∇ J ( θ ) \nabla J(\theta) ∇J(θ),即损失函数对参数 θ \theta θ 的导数。梯度指向的是损失函数增长最快的方向,所以我们在更新参数时,按照 梯度下降 的思路,沿着梯度的反方向调整参数 θ \theta θ。
更新过程如下:
θ : = θ − α ∇ J ( θ ) \theta := \theta - \alpha \nabla J(\theta) θ:=θ−α∇J(θ)
其中:
- θ \theta θ 是模型的参数向量。
- α \alpha α 是学习率,控制每次参数更新的步长。
- ∇ J ( θ ) \nabla J(\theta) ∇J(θ) 是损失函数 J ( θ ) J(\theta) J(θ) 对参数 θ \theta θ 的导数。
2.4 可微性对梯度下降的影响
如果损失函数不可微(例如有尖锐的拐角),那么在这些不可微的点上,导数不存在,梯度无法计算,梯度下降法就无法正常工作。正因为损失函数是 可微的,我们才能用梯度下降法进行优化,调整参数使得损失最小化。
例子:
均方误差(MSE)损失函数是可微的。它的定义为:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 J(θ)=2m1i=1∑m(hθ(x(i))−y(i))2
对 θ \theta θ 求导后,可以得到损失函数的梯度。通过梯度下降法,我们可以根据梯度信息调整 θ \theta θ 使损失逐步减小,最终找到最优解。
总结
- 可微性 确保了我们可以对损失函数进行求导,而 导数(梯度) 是优化算法中用于调整参数的关键。
- 正因为损失函数 可微,我们才能通过梯度下降等基于导数的优化方法,逐步调整参数 θ \theta θ,以最小化损失函数。
- 在机器学习的模型训练中,损失函数的可微性是梯度下降法等优化算法能够有效工作的前提条件。
3. 可微性与均方误差(MSE)的证明
3.1 为什么要假设损失函数是可微的?
在机器学习中,尤其是在优化问题中,通常我们希望损失函数是 可微的,因为这意味着可以使用基于梯度的优化方法,如梯度下降法。
可微性让我们能够通过计算损失函数的梯度来调整模型参数 θ \theta θ,从而找到使得损失函数最小化的参数值。
3.2 损失函数不一定是 MSE
损失函数可以有多种形式,并不局限于 均方误差(Mean Squared Error, MSE)。例如,绝对误差(Mean Absolute Error, MAE)、交叉熵损失(Cross-Entropy Loss)等都是常见的损失函数。
- MSE 是回归问题中常用的损失函数。
- MAE 在某些情况下更适合处理异常值。
- 交叉熵损失 在分类问题中使用较多,尤其是在神经网络的分类任务中。
3.3 MSE 是可微的吗?
是的,均方误差(MSE) 是 可微的,它具有良好的平滑性,并且在整个定义域上都是连续可微的。接下来我们来证明这一点。
3.4.1. 均方误差 (MSE) 的定义
MSE 是回归模型中常用的损失函数,定义为:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 J(θ)=2m1i=1∑m(hθ(x(i))−y(i))2
其中:
- m m m 是样本数。
- h θ ( x ( i ) ) h_\theta(x^{(i)}) hθ(x(i)) 是模型的预测值,它是输入样本 x ( i ) x^{(i)} x(i) 在参数 ( θ \theta θ ) 下的预测结果。对于线性回归模型,预测值表示为:
h θ ( x ( i ) ) = θ T x ( i ) h_\theta(x^{(i)}) = \theta^T x^{(i)} hθ(x(i))=θTx(i)
- y ( i ) y^{(i)} y(i) 是第 i i i 个样本的实际值。
- θ \theta θ 是我们要优化的参数。
这里的 2 被放在分母是为了在后面推导梯度时使得计算更简洁,但不影响结果的本质。
3.4.2. 可微性证明
为了证明 MSE 是可微的,我们需要对损失函数 J ( θ ) J(\theta) J(θ) 关于参数 θ \theta θ 求偏导数。首先,我们明确一下 i i i 和 j j j 分别代表什么:
- i i i 表示样本的索引,取值范围是 1 1 1 到 m m m,对应 m m m个样本。
- j j j表示参数的索引,取值范围是 1 1 1 到 n n n ,对应参数向量 θ \theta θ 的每一个维度。也就是说, j j j 是我们对参数 θ j \theta_j θj 求偏导的目标。
3.4.3. 梯度推导过程
现在,我们需要对 J ( θ ) J(\theta) J(θ) 求 θ j \theta_j θj 的偏导数。
首先,重写 J ( θ ) J(\theta) J(θ)的表达式:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 J(θ)=2m1i=1∑m(hθ(x(i))−y(i))2
记住,预测函数 h θ ( x ( i ) ) = θ T x ( i ) h_\theta(x^{(i)}) = \theta^T x^{(i)} hθ(x(i))=θTx(i) 。接下来,我们对 θ j \theta_j θj 求导,使用链式法则,先求整体平方部分的导数,再求内部 h θ ( x ( i ) ) h_\theta(x^{(i)}) hθ(x(i)) 对 θ j \theta_j θj 的导数:
∂ J ( θ ) ∂ θ j = 1 2 m ∑ i = 1 m 2 ( h θ ( x ( i ) ) − y ( i ) ) ⋅ ∂ h θ ( x ( i ) ) ∂ θ j \frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{2m} \sum_{i=1}^{m} 2(h_\theta(x^{(i)}) - y^{(i)}) \cdot \frac{\partial h_\theta(x^{(i)})}{\partial \theta_j} ∂θj∂J(θ)=2m1i=1∑m2(hθ(x(i))−y(i))⋅∂θj∂hθ(x(i))
其中, 2 2 2 和 1 2 \frac{1}{2} 21 相互抵消,简化为:
∂ J ( θ ) ∂ θ j = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ ∂ h θ ( x ( i ) ) ∂ θ j \frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot \frac{\partial h_\theta(x^{(i)})}{\partial \theta_j} ∂θj∂J(θ)=m1i=1∑m(hθ(x(i))−y(i))⋅∂θj∂hθ(x(i))
接下来,我们需要求 h θ ( x ( i ) ) h_\theta(x^{(i)}) hθ(x(i)) 对 θ j \theta_j θj 的偏导数。注意到 h θ ( x ( i ) ) = θ T x ( i ) = ∑ k = 1 n θ k x k ( i ) h_\theta(x^{(i)}) = \theta^T x^{(i)} = \sum_{k=1}^{n} \theta_k x_k^{(i)} hθ(x(i))=θTx(i)=∑k=1nθkxk(i),其中 x k ( i ) x_k^{(i)} xk(i)是第 i i i 个样本的第 k k k 个特征。根据导数规则, ∂ h θ ( x ( i ) ) ∂ θ j = x j ( i ) \frac{\partial h_\theta(x^{(i)})}{\partial \theta_j} = x_j^{(i)} ∂θ<