git 寻找代码改动的“始作俑者”

在团队开发中,git blame命令能帮助我们找出代码改动的作者。它显示每行代码的作者信息,有助于责任定位和解决疑惑。通过-L参数,可以指定查看特定行或函数的改动历史。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码改动的始作俑者

在协作开发中,知道哪行代码是谁改的是很有用的。

  1. 对于“烂代码”,可以找到责任人
  2. 对于不懂或者疑惑的地方,可以找到始作俑者问问

git blame

er, 这个命令的名字…,不管如何还是很强大的,git blame 作用于文件,可以显示出每一行代码的作者,如下:

$ git blame main.cpp
^3f13d3f (chenfeiyang 2020-03-29 22:30:19 +0800  1) #include "stdio.h"
^3f13d3f (chenfeiyang 2020-03-29 22:30:19 +0800  2) int main()
^3f13d3f (chenfeiyang 2020-03-29 22:30:19 +0800  3) {
   
^3f13d3f (chenfeiyang 2020-03-29 22:30:19 +0800  4)     printf("1\n");
7384f8b6 (chen
参考资源链接:[YOLO编程实践:服务端深度学习模型部署](https://wenku.csdn.net/doc/626uuwg1cw?utm_source=wenku_answer2doc_content) 在服务端部署YOLO模型时,TensorRT的运用可以极大提升推理速度效率,这对于实时目标检测尤其重要。《YOLO编程实践:服务端深度学习模型部署》资源中,你可以找到关于如何利用TensorRT对YOLO模型进行优化,并将其部署到Inference Server上的详细步骤指导。 首先,通过TensorRT的模型优化器(trtexec工具)对YOLO模型进行转换,它会自动应用多种优化技术,例如层融合、内核自动调优以及精度校准,从而实现模型的优化。转换后的模型通常会使用FP16或INT8等更低精度的数值表示,这些精度通常足以满足目标检测的准确性要求,同时显著减少模型大小提高推理速度。 其次,将优化后的模型部署到Inference Server时,需要确保模型的输入输出格式与服务端的API接口相匹配。Inference Server会管理模型的生命周期,包括加载模型、处理请求、监控性能扩展到多个实例等。 最后,为了在服务端实现高效的目标检测推理,还需要考虑实现模型服务的容器化,以便在不同的硬件操作系统环境中快速部署运行。此外,应该利用Inference Server提供的负载均衡功能,确保模型服务可以处理高并发请求,同时保持较低的响应时间。 这份资源详细地介绍了一个完整的流程,从模型的选择、优化、部署到性能监控,为你提供了一个深度学习模型部署的全面解决方案。它不仅涉及到YOLO模型TensorRT-Inference-Server的实际应用,还涵盖了容器化、API设计性能调优等多个方面,使得读者能够获得从理论到实践的全方位知识。 参考资源链接:[YOLO编程实践:服务端深度学习模型部署](https://wenku.csdn.net/doc/626uuwg1cw?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值