混沌、复杂适应系统和敏捷(摘录)

本文探讨了混沌系统的基本特征,如蝴蝶效应和分形,以及复杂适应系统的概念。强调在面对复杂性时,大型变化可能导致失败,而小变化可能产生重大影响。引用《敏捷项目管理》中的观点,提倡通过小而正确的变更来引导适应性的发展。同时提到了混沌理论在资本市场和不确定性世界中的应用,并列举了一些应对混沌的原则。
摘要由CSDN通过智能技术生成
 

混沌

“相对论消除了关于绝对空间和时间的幻想;量子力学则消除了关于可控测量过程的牛顿式的梦;而混沌则消除了拉普拉斯关于决定论式可预测的幻想。”
 
混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性——不可重复、不可预测,这就是混沌现象。进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。
 
混沌不是偶然的、个别的事件,而是普遍存在于宇宙间各种各样的宏观及微观系统的,万事万物,莫不混沌。混沌也不是独立存在的科学,它与其它各门科学互相促进、互相依靠,由此派生出许多交叉学科,如混沌气象学、混沌经济学、混沌数学等。混沌学不仅极具研究价值,而且有现实应用价值,能直接或间接创造财富。
 
混沌(Chaos),指确定性系统产生的一种对初始条件具有敏感依赖性的回复性非周期运动。浑沌与分形(fractal)和孤子(soliton)是非线性科学中最重要的三个概念。浑沌理论隶属于非线性科学,只有非线性系统才能产生浑沌运动。
 

混沌系统的基本特征

  • 对初始条件的敏感依赖性——蝴蝶效应(Butterfly Effect)
混沌系统对其初始条件异常敏感,以至于最初状态的轻微变化都可能导致不成比例的巨大后果。所谓“差之毫厘,谬以千里”是也。
  • 分形(Fractals)
分形是著名数学家曼德尔布诺特(Mandelbrot,1980)创立的分形几何理论的重要概念,意为系统在不同标度下具有自相似性质。而自相似性则是跨尺度的对称性,它意味着递归,即在一个模式内部还有一个模式。由于系统特征具有跨标度的重复性,所以可产生出具有结构和规则的隐蔽的有序模式。由此,分形具有两个普通特征:第一,它们至始至终都是不规则的;第二,在不同的尺度上,不规则程度却是一个常量。
混沌内部的有序是指混沌内部有结构,而且在不同层次上其结构具有相似性,即所谓的自相似性。
  • 奇异吸引子
吸引子是系统被吸引并最终固定于某一状态的特征。有三种不同的吸引子控制和限制物体的运动程度:点吸引子、极限环吸引子和奇异吸引子。点吸引子与极限吸引子都起着限制的作用以便于系统的性态呈现静态的、平衡性特征,故它们也叫做收敛性吸引子。而奇异吸引子则与前二者不同,它使系统偏离收敛性吸引子的区域而导向不同的形态。它通过诱发系统的活力,使其变为非预设模式,从而创造了不可预测性。
 
 
 

复杂适应系统

复杂适应系统(Complex Adaptive System,以下简称CAS)理论是美国霍兰(John Holland)教授于1994年提出的。 CAS 是当前混沌理论研究的前沿领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值