医学图像中的目标配准误差(TRE)计算方法
目标配准误差(TRE)
目标配准误差在图像配准中是重要的评价指标,广泛使用在3D配准中,但我在做实验时发现中文网络上很少描述这个方法的博文,故作此文以记之。
早期提出
上世纪六七十年代,随着计算机技术地发展,核磁共振技术与图像重建技术相结合,形成了核磁共振成像技术,继而在三维(3-D)空间中广泛使用。然而,问题也随之出现。
在同一位病人的不同病理时期生成的影像,通常会因为病理的进程产生形变,比如肿瘤形状大小的改变、骨骼生长的形变,在肺部图像生成时甚至会因为病人呼吸产生不必要的误差。
上图表示Dir-lab肺部数据集中case1最大吸气和最大呼气时的图像,可以看出有明显的形变。为此科研人员们做出了许多努力,发展了许多图像配准的方法,目前已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。
但三维图像配准中不同方法间效果差异难以通过肉眼分辨,因此,前辈们提出了以下方法用以计算配准结果的精度。
**FLE:**即定位基准点的误差
**FRE:**配准后相应基准点之间的均方根距离
**TRE:**配准后基准点以外的相应点之间的距离
J. M. Fitzpatrick and J. B. West, “The distribution of target registration error in rigid-body point-based registration,” IEEE Trans. Med. Imag.,vol. 20, no. 9, pp. 917–927, Sep. 2001.
TRE最初被Maurer等人在1997年定义,Registration of head volume images using implantable fiducial markers, IEEE
Transactions on Medical Imaging 16, 447–462.。
医学图像中术语**目标(target)**用于表示与配准直接相关的配准点,在医学应用中,它们通常是位于手术期间要切除的病变内或边界上的点,或是出于诊断目的而要检查的功能活动区域。目标误差即表示同一个标定点在两幅图像中的差异。
如图3所示,图中黑色的点是我们需要需要关注的目标,这些点在不同时期被拍摄形成了上图所示的目标运动轨迹。
图4表示的是专家标定的300个存在配准误差的目标点位置,它显示了在Dir-lab数据集中T50相位相较于T00相位估计存在误差的目标点的位置。
TRE代码实现
在计算TRE时,“目标”可以是预定义的位置(基准点或landmark),表面点或感兴趣区域内的任意选择点。在计算3-D图像TRE时,通常建议计算他们的平均值。对于规则网格(均匀分布)上固定的3-D点,需要用金标准的点和配准后转换过的点计算他们的距离。
随着技术的发展,TRE的计算方式也有许多改进,计算公式的推导就不放了。简单来说,就是计算原先的点和配准后的点的欧氏距离,再计算其均值和方差。