C++使用onnxruntimeopencv对onnx模型进行推理(附代码)

本文介绍了如何在C++环境中利用onnxruntime和opencv对ONNX模型进行推理。首先,文章讲解了ONNX模型的准备和测试图像的选择。接着,详细阐述了使用onnxruntime进行推理的步骤,并展示了推理结果。最后,文章演示了通过opencv进行图像推理的过程,同样得到了分类结果。
摘要由CSDN通过智能技术生成

文章目录

0. onnx模型准备以及测试图

参考:https://blog.csdn.net/qq_44747572/article/details/120820964?spm=1001.2014.3001.5501

1. c++使用onnxruntime进行推理

#include <opencv2/core.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc_c.h>
#include <opencv2/dnn.hpp>
#include <iostream>  
#include <onnxruntime_cxx_api.h>
#include <assert.h>
#include <vector>
#include <fstream>


using namespace cv;     //当定义这一行后,cv::imread可以直接写成imread
using namespace std;
using namespace Ort;
using namespace cv::dnn;

String labels_txt_file = "F:\Pycharm\PyCharm_Study\Others\c++_learning\C++_Master\Onnx\classification\classification_classes_ILSVRC2012.txt";
vector<String> readClassNames();                  // string对象作为vector对象 

// 图像处理  标准化处理
void PreProcess(const Mat& image, Mat& image_blob)
{
	Mat input;
	image.copyTo(input);


	//数据处理 标准化
	std::vector<Mat> channels, channel_p;
	split(input, channels);
	Mat R, G, B;
	B = channels.at(0);
	G = channels.at(1);
	R = channels.at(2);

	B = (B / 255. - 0.406) / 0.225;
	G = (G / 255. - 0.456) / 0.224;
	R = (R / 255. - 0.485) / 0.229;

	channel_p.push_back(R);
	channel_p.push_back(G);
	channel_p.push_back(B);

	Mat outt;
	merge(channel_p, outt);
	image_blob = outt;
}


// 读取txt文件
std::vector<String> readClassNames()
{
	std::vector<String> classNames;

	std::ifstream fp(labels_txt_file);
	if (!fp.is_open())
	{
		printf("could not open file...
");
		exit(-1);
	}
	std::string name;
	while (!fp.eof())
	{
		std::getline(fp, name);
		if (name.length())
			classNames.push_back(name);
	}
	fp.close();
	return classNames;
}



int main()         // 返回值为整型带参的main函数. 函数体内使用或不使用argc和argv都可
{

	//environment (设置为VERBOSE(ORT_LOGGING_LEVEL_VERBOSE)时,方便控制台输出时看到是使用了cpu还是gpu执行)
	Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值