tensorflow serving压测

GPU部署
v100显卡
10核CPU
electra small 90rps
GPU占用率25%
CPU占用200%

CPU部署
67rps
CPU占用1000%

结论:
1.tf能用完所有CPU核心,即才用了多进程部署,并行
2.tf对GPU是串行的,没有用完所有GPU
3.对于矩阵计算规模小,即小模型的部署CPU更合适,CPU能实现对大规模请求的并行,易高并发,但无法对矩阵计算并行,单次请求时间不会减小
4.对于大型矩阵计算的大模型,GPU对矩阵并行 ,一次推理速度能快很多,但无法对多次请求进行并行,难实现高并发

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值