【算法设计zxd】第3章 求解方程的近似算法 非线性——二分法(穿根),牛顿法(切线),线性代数

目录

非线性方程:

非线性方程的收敛性和收敛速度:

 建立迭代方程

【例3-5】求9x^2-sin x-1=0,在(0,1)之间的解,要求| 9x^2-sin x-1|<0.00001。

二分法:(穿根法)

 二分法的时间渐近复杂度分析

【例3-5】求9x^2-sin x-1=0,在(0,1)之间的解,要求| 9x^2-sin x-1|<0.00001。

牛顿法--有点儿化曲为直那意思

线性代数方程:

 【例3-8】求下列解线性方程组的解


非线性方程:

非线性方程的收敛性和收敛速度:

定义 3.1 x_k是方程 f(x) =0 的根,若存在 x k 的一个邻域 Δ,当 初值属于 Δ时,迭代收敛,则称该迭代过程具有局部收敛性
定义3.2 设 \varepsilon _{k} = x^{*} - x _{k}第k次迭代的迭代误差,若 【第k+1次迭代误差 与 第k次迭代误差的p次方 同阶。】
则称迭代是 p阶收敛的。称c 渐近误差常数
定义 3.3 EI = p ^{\frac{1}{\Theta }} 效率指数,其中,θ表示每次迭代的 计算量 p 表示迭代的收敛阶
定理 3.1 若当 x [a, b] 时, φ(x) [a, b] ,且 φ(x)满足 |φ’(x)| ≤ L<1, x [a, b]
则迭代收敛于唯一的根。

建立迭代方程 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值