目录
【例3-5】求9x^2-sin x-1=0,在(0,1)之间的解,要求| 9x^2-sin x-1|<0.00001。
【例3-5】求9x^2-sin x-1=0,在(0,1)之间的解,要求| 9x^2-sin x-1|<0.00001。
非线性方程:
非线性方程的收敛性和收敛速度:
定义
3.1 设
是方程
f(x)
=0
的根,若存在
x
k
的一个邻域
Δ,当 初值属于
Δ时,迭代收敛,则称该迭代过程具有局部收敛性。
定义3.2 设
为第k次迭代的迭代误差,若
【第k+1次迭代误差 与 第k次迭代误差的p次方 同阶。】

则称迭代是 p阶收敛的。称c
为渐近误差常数。
定义
3.3
称
为效率指数,其中,θ表示每次迭代的 计算量,
p
表示迭代的收敛阶。
定理
3.1
若当
x
∈
[a, b]
时,
φ(x)
∈
[a, b]
,且
φ(x)满足 |φ’(x)| ≤ L<1, x
∈
[a, b]
则迭代收敛于唯一的根。