机器学习
文章平均质量分 63
软硬兼吃曹达华
像巫师那样到处航行
展开
-
TensorFlow栗子:生成式对抗网络应用在mnist
python3.5TensorFlow 1.3生成式对抗网络(GAN)包含:生成模型和一个判别模型。生成式对抗网络主要解决的问题是如何从训练样本中学习出新样本。from __future__ import print_functionfrom collections import defaultdicttry: import cPickle as pickleexcep原创 2017-10-08 12:10:52 · 762 阅读 · 0 评论 -
机器学习(2)梯度下降
斯坦福《机器学习》吴恩达教授公开课梯度下降课堂讲义:http://cs229.stanford.edu/section/cs229-linalg.pdf梯度下降(Gradient Descent)本章介绍线性回归中最基础的方法--最小二乘法的一个特例基本形式:f(x) = w1x1 + w2x2+ ...+ wixi + bxi是x在第i个特征上的取值;f(x)为模型输原创 2017-11-05 13:54:28 · 431 阅读 · 0 评论 -
机器学习(10)隐马尔可夫模型
“多一条公式,少一半读者”--霍金饮水不忘挖井人,感谢知乎上关于隐马尔可夫的回答。这里分两部分,第一部分是隐马尔可夫模型“像”什么,第二部分是实际应用中,隐马尔可夫模型的三类问题。第一部分:有一款游戏,里面有个角色,职业是战士,战士有三种状态:正常状态,狂暴状态,防御状态。战士战斗只有两种动作:平A和格挡。正常状态:平A出现暴击的概率为2原创 2017-12-16 18:04:22 · 511 阅读 · 0 评论 -
机器学习(9)贝叶斯分类
先来看一个例子:假设广东娱乐大学里面男生和女生人数比例是3:1,男生中留长发的比例是10%,女生留长发的比例是80%。现在随机观测到N个留长发的学生的背影,推论这N个学生中女生的比例。这里假设学校总人数是U人,P(男)表示U人中男生的比例,即75%,P(长发|男)表示在男里面长发的比例,即10%,这就是个条件概率。那么,同样地,P(女)=25%,P(长发|女)=80%原创 2017-12-15 17:09:09 · 371 阅读 · 0 评论 -
机器学习(8)决策树
决策树生成是一个递归过程,是一种简单高效并且具有强解释性的模型,广泛应用于数据分析领域。其本质是一颗由多个判断节点组成的“树”。有一堆水果,其中有香蕉,苹果,杏这三类,现在要对它们分类,可以选择的特征有两个:形状和大小,其中形状的取值有个:圆形和不规则形,大小的取值有:相对大和相对小。现在要对其做分类,我们可以这样做:首先根据特征:形状,如果不是圆形,那么一定是香蕉,这个就是叶子节点;原创 2017-12-14 16:57:48 · 397 阅读 · 0 评论 -
机器学习(7)K-mean聚类
聚类属于非监督学习,k-mean是聚类中经典算法。非监督学习即是只有样本没有标签。训练数据集{x(1),x(2),…,x(m)}{x(1),x(2),…,x(m)}(其中x(i)∈Rnx(i)∈Rn)和聚类数量KK(将数据划分为KK类);算法输出是KK个聚类中心μ1,μ2,…,μKμ1,μ2,…,μK和每个数据点x(i)x(i)所在的分类。步骤:1,初始化K个聚类中心μ1,μ2,…,μ原创 2017-12-13 16:50:03 · 503 阅读 · 1 评论 -
tensorflow入门栗子:mnist的AlexNet实现
本文参考《TensorFlow技术解释与实战》一书,感谢李嘉璇大佬对社区的贡献python版本3.5tensorflow版本1.3 CPU版本#coding=utf-8from __future__ import print_functionfrom tensorflow.examples.tutorials.mnist import input_dataprint("开始下载原创 2017-10-07 12:49:32 · 1087 阅读 · 1 评论 -
矩阵基本运算
原创 2017-11-16 16:56:10 · 687 阅读 · 0 评论 -
机器学习(4)强化学习のQ-Learning
Q-learning属于基于价值(value)的单步更新离线学习强化学习算法;什么是基于价值和单步更新看:http://blog.csdn.net/ilypl/article/details/78539754先来看一个场景:我有一条狗,叫dogedoge一开始不知道在哪里拉粑粑,现在doge有两个选择,一个是到马桶拉,另一个就是在房子里面拉。在S1状态,doge原创 2017-11-21 18:23:46 · 870 阅读 · 0 评论 -
机器学习(6)SVM
SVM有严格的数学证明,但挺复杂,我仅粗略地写下这篇文章。用一个二维空间里仅有两类样本的分类问题来举个小例子。假设我们给定了下图左图所示的两类点Class1和Class2(也就是正样本集和负样本集)。我们的任务是要找到一个线,把他们划分开。显然,只要在两堆数据中划一条线就可以。但划线也有很多种画法:那到底哪种分法比较好?SVM试图寻找一个超平面来对样本进行分割,把样原创 2017-12-08 12:18:11 · 460 阅读 · 0 评论 -
强化学习方法汇总
本文转自莫烦大佬了解强化学习中常用到的几种方法,以及他们的区别, 对我们根据特定问题选择方法时很有帮助. 强化学习是一个大家族, 发展历史也不短, 具有很多种不同方法. 比如说比较知名的控制方法Q learning, Policy Gradients, 还有基于对环境的理解的 model-based RL 等等. 接下来我们通过分类的方式来了解他们的区别.Model-free转载 2017-11-15 13:38:12 · 2635 阅读 · 0 评论 -
机器学习(5)FP,BP神经网络
一般神经网络教程都会用大脑神经网络作类比,但实际上两个根本是不一样的东西,乱用类比学习是一件很危险的事情,知道神经网络是个数学模型就可以了。一个简单的神经网络如下图所示,每一个圆圈表示一个神经元,每个神经元接收上一层神经元的输出作为其输入,同时其输出信号到下一层,其中每一层的第一个神经元称为bias unit,它是额外加入的其值为1,通常用+1表示,下图用虚线画出。X为输入层,thet原创 2017-11-28 19:21:48 · 3556 阅读 · 0 评论 -
机器学习(1)从基本术语开始
哦~从这章开始,要写一个系列有关机器学习的套路。从原理开始吧,机器学习的代码到处都能找到呢。选教程的话,推荐周志华的《机器学习》,视频教程看吴恩达教授的机器学习公开课就可以了。数据集(data set),样本(sample)或特征向量(feature vector),特征(feature)或者属性(attribute),属性值(attribute value),维数(dimen原创 2017-11-04 12:09:28 · 510 阅读 · 0 评论 -
机器学习(3)强化学习の入门
在机器学习的监督学习,无监督学习和强化学习中,我最喜欢强化学习,因为强化学习最接近动物的学习方式,而且业务需求特别强烈。Reinforcement Learning(增强学习,以下简称RL ) RL背后的一个核心概念是价值估计,并据此进行相应动作。在继续深入之前,最好先了解一些术语。在RL中,实施动作的个体被称为agent(代理),它使用策略进行动作决策。一个代理通常嵌于一个e原创 2017-11-08 15:15:56 · 409 阅读 · 0 评论 -
只用python标准库实现的单隐藏层BP神经网络
看完基础的神经网络原理,觉得不就先线性回归,然后往回求导更新权值嘛,也不难。但是落实到代码的时候,就写不出来....就是那种道理我都懂,就是做不出来的感觉。 矩阵左乘右乘,矩阵求导看不明白,出门右拐看矩阵论教程,直接就从深度学习到深度厌学了....... 本篇就推荐一个老外phD的网站,他认为即使不用太好的数学也能做机器学习,所以他实现神经网络的方法都没有矩阵计算,老外的网站:...原创 2018-08-17 15:31:27 · 1463 阅读 · 0 评论