机器学习
软硬兼吃曹达华
像巫师那样到处航行
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习(2)梯度下降
斯坦福《机器学习》吴恩达教授公开课梯度下降课堂讲义:http://cs229.stanford.edu/section/cs229-linalg.pdf梯度下降(Gradient Descent)本章介绍线性回归中最基础的方法--最小二乘法的一个特例基本形式:f(x) = w1x1 + w2x2+ ...+ wixi + bxi是x在第i个特征上的取值;f(x)为模型输原创 2017-11-05 13:54:28 · 507 阅读 · 0 评论 -
机器学习(9)贝叶斯分类
先来看一个例子:假设广东娱乐大学里面男生和女生人数比例是3:1,男生中留长发的比例是10%,女生留长发的比例是80%。现在随机观测到N个留长发的学生的背影,推论这N个学生中女生的比例。这里假设学校总人数是U人,P(男)表示U人中男生的比例,即75%,P(长发|男)表示在男里面长发的比例,即10%,这就是个条件概率。那么,同样地,P(女)=25%,P(长发|女)=80%原创 2017-12-15 17:09:09 · 446 阅读 · 0 评论 -
矩阵基本运算
原创 2017-11-16 16:56:10 · 735 阅读 · 0 评论 -
强化学习方法汇总
本文转自莫烦大佬了解强化学习中常用到的几种方法,以及他们的区别, 对我们根据特定问题选择方法时很有帮助. 强化学习是一个大家族, 发展历史也不短, 具有很多种不同方法. 比如说比较知名的控制方法Q learning, Policy Gradients, 还有基于对环境的理解的 model-based RL 等等. 接下来我们通过分类的方式来了解他们的区别.Model-free转载 2017-11-15 13:38:12 · 2848 阅读 · 0 评论 -
机器学习(1)从基本术语开始
哦~从这章开始,要写一个系列有关机器学习的套路。从原理开始吧,机器学习的代码到处都能找到呢。选教程的话,推荐周志华的《机器学习》,视频教程看吴恩达教授的机器学习公开课就可以了。数据集(data set),样本(sample)或特征向量(feature vector),特征(feature)或者属性(attribute),属性值(attribute value),维数(dimen原创 2017-11-04 12:09:28 · 589 阅读 · 0 评论 -
只用python标准库实现的单隐藏层BP神经网络
看完基础的神经网络原理,觉得不就先线性回归,然后往回求导更新权值嘛,也不难。但是落实到代码的时候,就写不出来....就是那种道理我都懂,就是做不出来的感觉。 矩阵左乘右乘,矩阵求导看不明白,出门右拐看矩阵论教程,直接就从深度学习到深度厌学了....... 本篇就推荐一个老外phD的网站,他认为即使不用太好的数学也能做机器学习,所以他实现神经网络的方法都没有矩阵计算,老外的网站:...原创 2018-08-17 15:31:27 · 1550 阅读 · 0 评论
分享