一、什么是群
伽罗瓦理论之美
参考URL: https://zhuanlan.zhihu.com/p/28023009
中文名:群
外文名:group
含 义:数学概念
在数学中,群表示一个拥有满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构,包括阿贝尔群、同态和共轭类。
伽罗瓦是站在更高的层次上来看待数和运算的。在伽罗瓦看来,“数和运算”组合在一起可以构成一种数学结构,这是一种更加本质、更加抽象的数学结构,当继续把这种结构脱离“数字和常规意义上的运算”而抽象出来的时候,就形成了新的数学概念——群。
(1)群:给一个集合中的元素定义一种运算“乘法”(这个“乘法”不是数字运算的乘法,而只是借用了这个名字,因此加上了引号),如果这个集合中的元素和这个“乘法”满足:
<1> 封闭性:集合中任两个元素相“乘”的结果在这个集合之内;
<2> 结合律:这个“乘法”满足(ab)c=a(bc);
<3> 单位元:集合中存在某个元素e,对于任意集合中的其它元素a有 ea=ae=a,e被称为单位元;
<4> 逆元:对于集合中任意元素a,一定存在集合中的另外一个元素
a
−
1
a^{-1}
a−1 ,使得
a
∗
a
−
1
=
a
−
1
∗
a
=
e
a*a^{-1} =a^{-1}*a=e
a∗a−1=a−1∗a=e ,a与
a
−
1
a^{-1}
a−1 互为逆元。
此时,这个集合与这个运算组合在一起被称为“群”。
“群”很显然是把数字及其运算关系抽象之后形成的一种数学结构。容易验证,整数集合在加法运算下成群(这里的加法就通常意义的数字加法,对应着群定义中的“乘法”),其单位元是数字0;但是整数集合在乘法运算下不成群,这是因为对于大部分整数,没有乘法的逆元。
其实群在日常生活中也会存在,常见的是魔方,它的全部操作构成一个集合,再定义任意两种操作的“乘法”为“先执行第一种操作、再执行第二种操作”,则容易验证魔方的全部操作在这种“乘法”下成群,叫做RUBIC群。
环与域:在一个集合上定义两种运算“加法”和“乘法”,如果这个集合在这个“加法”下成群,而在这个“乘法”下只满足“封闭性”与“结合律”,则称这个集合与这两种运算构成一个“环”;如果这个集合去除“加法”群下的单位元后形成的新集合在“乘法”下成群,则称这个集合与这两种运算构成一个“域”。显然,“域”是一种特殊的“环”(以上不是环与域的严格定义)。
特别是看懂了“群”和“域”这两个概念,就会理解这些结构其实就是从基础的数字运算关系中抽象出来的。 比如:有理数在加法和乘法运算下构成一个域,0是加法单位元,1是乘法单位元,不包含0的有理数在乘法运算下成群;实数、复数在加法和乘法下都构成域;无理数在加法和乘法下不能构成域,这是因为无理数之和可能是有理数,不满足封闭性。
二、什么是阿贝尔群
中文名:阿贝尔群
外文名:Abel Group
别 称:交换群或可交换群
阿贝尔群以挪威数学家尼尔斯·阿贝尔命名。
阿贝尔群(Abelian Group),又称交换群或加群,是这样一类群:
它由自身的集合 G 和二元运算 * 构成。它除了满足一般的群公理,即运算的结合律、G 有单位元、所有 G 的元素都有逆元之外,还满足交换律公理。因为阿贝尔群的群运算满足交换律和结合律,群元素乘积的值与乘法运算时的次序无关。
三、群论入门
五次方程(三)群论入门 隐藏在根与系数关系中的秘密
参考URL: https://www.bilibili.com/video/BV1Wb41187wA?from=search&seid=13543561021966465460
关于群论和魔群的简单介绍
https://www.bilibili.com/video/BV1Rh411R7KL?from=search&seid=1746449292493558236
四、参考
五次方程为什么没有求根公式?(一)阿贝尔和伽罗瓦的悲惨世界
https://www.bilibili.com/video/BV1pb411Y7fB?from=search&seid=12430106117119008311
【天才简史-阿贝尔】穿越者都没这么厉害吧?阿贝尔,一个让我跪着把视频做完的男人!
https://www.bilibili.com/video/BV1pi4y1E7DP/?spm_id_from=333.788.videocard.0