SPFA HDU 1874模板

本文介绍了一种基于Dijkstra算法的优化实现,用于解决多个城镇间寻找最短路径的问题。通过改进队列操作和增加访问标记,提高了算法效率。文章提供了完整的C++代码示例,适用于竞赛编程和实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

畅通工程续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 52542    Accepted Submission(s): 19640


Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 

Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 

Sample Output
2

-1

其实和dijstra差不多,改了队列和加了vis;

#include <cstdio>
#include <cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;

#define EPS 1e-7
#define clr(x) memset(x, 0, sizeof(x))
#define long long ll
#define PI acos(-1.0)

const int INF = 0x3f3f3f3f;
const int MOD=100000000;
const int MAXN = 10000000;
const int dx[] = {1, -1, 0, 0};
const int dy[] = {0, 0, 1, -1};

vector<pair<int, int> > G[1005];
int d[1005];
int vis[1005];
int main()
{
    int n, m;
    while(~scanf("%d %d", &n, &m))
    {
        for(int i = 0; i < n; i++)
            d[i] = INF;
        for(int i = 0; i < n; i++)
            G[i].clear();
        for(int i = 0; i < n; i++)
            vis[i] = 0;
        int a, b, c;
        for(int i = 0; i < m; i++)
        {
            scanf("%d %d %d", &a, &b, &c);
            G[a].push_back(make_pair(b, c));
            G[b].push_back(make_pair(a, c));
        }
        int s, t;
        scanf("%d %d", &s, &t);
        queue<int> Q;
        d[s] = 0;
        vis[s] = 1;
        Q.push(s);
        while(!Q.empty())
        {
            int now = Q.front();
            Q.pop();
            vis[now] = 0;
            for(int i = 0; i < G[now].size(); i++)
            {
                int v = G[now][i].first;
                if(d[v] >  d[now] + G[now][i].second)
                {
                    d[v] = d[now] + G[now][i].second;
                    if(vis[v] == 1)
                        continue;
                    vis[v] = 1;
                    Q.push(v);
                }
            }
        }
        if(d[t] == INF)
            printf("-1\n");
        else
            printf("%d\n", d[t]);
    }
    return 0;
}


### SPFA算法简介 SPFA(Shortest Path Faster Algorithm)是一种用于求解单源最短路径的改进型Bellman-Ford算法。它通过队列优化来减少冗余计算,从而提高效率。对于差分约束系统的求解,可以通过构建图模型并运行SPFA算法找到满足条件的一组解。 以下是基于Python实现的一个标准SPFA算法模板: ```python from collections import deque def spfa(n, edges, start_node): """ :param n: 节点数量 :param edges: 边列表 [(u, v, w)] 表示从 u 到 v 的边权为 w :param start_node: 起始节点编号 :return: dist 数组表示从起始节点到其他各节点的距离;如果存在负环,则返回 None """ INF = float('inf') dist = [INF] * (n + 1) # 初始化距离数组 in_queue = [False] * (n + 1) # 记录节点是否在队列中 cnt = [0] * (n + 1) # 统计进入队列次数,用于检测负环 queue = deque() dist[start_node] = 0 # 设置起点距离为0 queue.append(start_node) in_queue[start_node] = True while queue: node = queue.popleft() in_queue[node] = False for neighbor, weight in edges.get(node, []): # 遍历当前节点的所有邻居 if dist[neighbor] > dist[node] + weight: # 松弛操作 dist[neighbor] = dist[node] + weight if not in_queue[neighbor]: queue.append(neighbor) in_queue[neighbor] = True cnt[neighbor] += 1 if cnt[neighbor] >= n: # 如果某个节点入队超过n次,则说明存在负环 return None # 存在负环,无法继续计算 return dist ``` 上述代码实现了SPFA的核心逻辑,并能够判断是否存在负权回路[^1]。当`cnt[neighbor] >= n`时,意味着该节点被访问了过多次数,因此可以断定图中存在负权循环。 ### 差分约束系统中的应用 为了利用SPFA解决差分约束问题,通常需要将一组线性不等式转化为有向加权图上的最短路径问题。具体而言,给定一系列形如 \(x_i - x_j \leq c_k\) 的不等式,可将其转换成对应的图结构并通过SPFA算法验证其可行性或寻找最优解集。 #### 特殊情况处理——恒等关系 针对特定形式的关系表达式\(xi = k\),可以直接初始化对应顶点的距离值而无需额外考虑松弛过程的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值