给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix = [ [1,2,3], [4,5,6], [7,8,9] ], 原地旋转输入矩阵,使其变为: [ [7,4,1], [8,5,2], [9,6,3] ]
示例 2:
给定 matrix = [ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6, 7], [15,14,12,16] ], 原地旋转输入矩阵,使其变为: [ [15,13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7,10,11] ]
顺时针旋转矩阵的步骤
1.把矩阵上下翻转。比如[1,2][3,4] -> [3, 4][1, 2]
2.将矩阵沿着从左上角到右下角的对角线进行翻转
如果是逆时针
则将1,2步倒着操作
如果记不住顺序,可以试着用二维数组模拟一下
class Solution {
public:
void rotate(vector<vector<int> >& matrix)
{
int r = matrix.size();
if(r == 0)
return;
int c = matrix[0].size();
for(int i = 0; i < r / 2; i++)
{
for(int j = 0; j < c; j++)
{
swap(matrix[i][j], matrix[r - 1 - i][j]);
}
}
for(int i = 0; i < r; i++)
{
for(int j = i + 1; j < c; j++)
{
swap(matrix[i][j], matrix[j][i]);
}
}
}
};