【跟我学扣子工作流】1、循环体:解锁 AI 批量生成任意内容的密码

你是不是还在为制作古诗词分镜图片而苦恼?

请记住,现在有一个强大的工具可以帮你轻松解决。

今天就来讲讲工作流中最核心的一部分 —— 循环体,它能帮我们循环去干一件重复的事,比如制作古诗分镜图片、批量总结公众号文章并汇总等。

今天我们用 “制作古诗分镜图片” 作为例子。

AI绘画使用“蒸汽朋克东方风格”,想获取该风格的提示词可以去看上一篇文章《【赶快围观】AI 古诗、小说、故事的 20 种插画风格一次饱览》

以《独坐敬亭山》为例,“众鸟高飞尽,孤云独去闲。相看两不厌,只有敬亭山。”

只需要 20 秒,一首古诗的 AI 绘画就输出完毕了,看效果

打开扣子,创建一个项目“循环的练习”

设置为工作流模式

去添加工作流

添加工作流-practice_circular

我们有两种方式实现:

1、直接给大模型,让大模型一次性生成5个镜头,然后按规定的格式输出

2、用代码切割为5段,然后使用循环,进行任务

让我们来分别做一下对比效果。

首先去google一下:古诗生成图片 提示词

第一个推荐的文章,提示词拿来试一下。但是要稍作修改,让大模型每一句都进行分镜。

添加大模型,输入刚刚的提示词,点击测试运行

大模型输出了2个分镜,显然不符合我们的要求

把大模型切换到Kimi

能输出4个分镜了,但是标题没有分镜

显然,如果我们寄托于大模型的理解能力,很多时候效果都不理想。

所以,工作流的作用就出来了,我们可以:

1、使用代码,进行分段切割为5段

2、再循环大模型5次生成5个分镜。

首先,添加一个代码,写一段切割文本的代码。不会写没关系,我们可以让AI帮写。

写代码可以用通义千问:

将代码粘贴到代码编辑框

修改输出类型为字符串数组,并点击测试:

可以看到已经切割为5段啦

接下来添加循环

进行参数的配置

在循环体里面添加大模型,进行配置

此时,我们将切割后的每一段发给循环,循环会依次执行大模型,最后汇总返回结果

试运行一下:

最终生成了5个分镜

接着选中循环体,点击左侧的图像流

去创建一个图像流-images_ancient_poetry

添加图像生成工具,设置好比例

修改一下提示词:

根据描述生成画面:

{{input}}

发布图像流之前需要试运行一下:

回到循环,把图像流加到循环体

修改循环的返回是图片数组

试运行一下,发布,然后在对话框里面输入古诗

为了让输出结果更好看一点,添加个卡片输出吧~

在每张图片生成结束之后,发个消息

创建一个卡片

给卡片的元素设置好变量

给消息绑定卡片以及数据

最后成功输出

后续的大多数案例,都会基于本次的分割以及循环的基础上,进行扩展。

切换个风格,看下最终效果:

本次教程结束~

### 批处理文件工作流解决方案 对于批处理文件的工作流需求,多种工具和服务可以满足不同层次的需求。AWS 提供了一系列服务来支持高效的数据加载和处理流程。 #### 使用 AWS Lambda 和 S3 进行事件驱动的批量数据处理 当对象上传到 Amazon S3 存储桶时触发 AWS Lambda 函数是一种常见模式。Lambda 可以执行自定义逻辑,如调用其他 AWS 服务或运行复杂算法来进行数据转换[^1]。 ```python import boto3 def lambda_handler(event, context): s3_client = boto3.client('s3') bucket_name = event['Records'][0]['s3']['bucket']['name'] file_key = event['Records'][0]['s3']['object']['key'] # Process the uploaded file here return { 'statusCode': 200, 'body': f'Processed {file_key} from bucket {bucket_name}' } ``` #### 利用 AWS Glue 实现无服务器 ETL 工作流 AWS Glue 是一种完全托管的服务,用于发现、准备并组合来自多个源的数据集。它非常适合构建ETL(提取、转换、加载)管道,尤其适用于大规模批处理作业。Glue 支持通过可视化界面创建复杂的依赖关系图,并自动管理底层基础设施资源[^2]。 #### 结合 Step Functions 协调多步任务 Amazon Step Functions 让开发者能够轻松协调分布式应用程序中的各个组件。借助状态机描述符语言(JSON),Step Functions 能够清晰表达业务逻辑分支条件以及错误重试策略等特性。这使得设计健壮可靠的批处理流水线变得更加简单直观.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值