opencv人脸检测--detectMultiScale函数

opencv人脸检测--detectMultiScale函数





转载请注明出处:http://blog.csdn.net/itismelzp/article/details/50379359




首先上两张图。






现在要对上面两张图进行人脸检测。




一、Haar特征分类器介绍


Haar特征分类器就是一个XML文件,该文件中会描述人体各个部位的Haar特征值。包括人脸、眼睛、嘴唇等等。

Haar特征分类器存放目录:OpenCV安装目录中的\data\ haarcascades目录下,opencv2.4.9版本下的Haar特征分类器如下:

haarcascade_eye.xml
haarcascade_eye_tree_eyeglasses.xml
haarcascade_frontalface_alt.xml
haarcascade_frontalface_alt_tree.xml
haarcascade_frontalface_alt2.xml
haarcascade_frontalface_default.xml
haarcascade_fullbody.xml
haarcascade_lefteye_2splits.xml
haarcascade_lowerbody.xml
haarcascade_mcs_eyepair_big.xml
haarcascade_mcs_eyepair_small.xml
haarcascade_mcs_leftear.xml
haarcascade_mcs_lefteye.xml
haarcascade_mcs_mouth.xml
haarcascade_mcs_nose.xml
haarcascade_mcs_rightear.xml
haarcascade_mcs_righteye.xml
haarcascade_mcs_upperbody.xml
haarcascade_profileface.xml
haarcascade_righteye_2splits.xml
haarcascade_smile.xml
haarcascade_upperbody.xml

根据命名就可以很快知道各个分类器的用途。

其中:haarcascade_frontalface_alt.xmlhaarcascade_frontalface_alt2.xml都是人脸识别的Haar特征分类器了。




二、detectMultiScale函数详解



cvHaarDetectObjects是opencv1中的函数,opencv2中人脸检测使用的是 detectMultiScale函数。它可以检测出图片中所有的人脸,并将人脸用vector保存各个人脸的坐标、大小(用矩形表示),函数由分类器对象调用


void detectMultiScale(
	const Mat& image,
	CV_OUT vector<Rect>& objects,
	double scaleFactor = 1.1,
	int minNeighbors = 3, 
	int flags = 0,
	Size minSize = Size(),
	Size maxSize = Size()
);


函数介绍:

参数1:image--待检测图片,一般为灰度图像加快检测速度;

参数2:objects--被检测物体的矩形框向量组;
参数3:scaleFactor--表示在前后两次相继的扫描中,搜索窗口的比例系数。默认为1.1即每次搜索窗口依次扩大10%;
参数4:minNeighbors--表示构成检测目标的相邻矩形的最小个数(默认为3个)。
        如果组成检测目标的小矩形的个数和小于 min_neighbors - 1 都会被排除。
        如果min_neighbors 为 0, 则函数不做任何操作就返回所有的被检候选矩形框,
        这种设定值一般用在用户自定义对检测结果的组合程序上;
参数5:flags--要么使用默认值,要么使用CV_HAAR_DO_CANNY_PRUNING,如果设置为

        CV_HAAR_DO_CANNY_PRUNING,那么函数将会使用Canny边缘检测来排除边缘过多或过少的区域,

        因此这些区域通常不会是人脸所在区域;
参数6、7:minSize和maxSize用来限制得到的目标区域的范围。




三、示例代码



#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/opencv.hpp>

#include <vector>
#include <cstdio>

using namespace std;
using namespace cv;

int main()
{
	
	// 【1】加载分类器
	CascadeClassifier cascade;
	cascade.load("haarcascade_frontalface_alt2.xml");

	Mat srcImage, grayImage,dstImage;
	// 【2】读取图片
	srcImage = imread("image.jpg");
	dstImage = srcImage.clone();
	imshow("【原图】", srcImage);

	grayImage.create(srcImage.size(), srcImage.type());
	cvtColor(srcImage, grayImage, CV_BGR2GRAY); // 生成灰度图,提高检测效率

	// 定义7种颜色,用于标记人脸
	Scalar colors[] =
	{
		// 红橙黄绿青蓝紫
		CV_RGB(255, 0, 0),
		CV_RGB(255, 97, 0),
		CV_RGB(255, 255, 0),
		CV_RGB(0, 255, 0),
		CV_RGB(0, 255, 255),
		CV_RGB(0, 0, 255),
		CV_RGB(160, 32, 240)
	};

	// 【3】检测
	vector<Rect> rect;
	cascade.detectMultiScale(grayImage, rect, 1.1, 3, 0);  // 分类器对象调用

	printf("检测到人脸个数:%d\n", rect.size());

	// 【4】标记--在脸部画圆
	for (int i = 0; i < rect.size();i++)
	{
		Point  center;
		int radius;
		center.x = cvRound((rect[i].x + rect[i].width * 0.5));
		center.y = cvRound((rect[i].y + rect[i].height * 0.5));

		radius = cvRound((rect[i].width + rect[i].height) * 0.25);
		circle(dstImage, center, radius, colors[i % 7], 2);
	}

	// 【5】显示
	imshow("【人脸识别detectMultiScale】", dstImage);
	
	waitKey(0);
	return 0;
}




效果图:






如果要识别人体的其它部位,只需将上面的haarcascade_frontalface_alt2.xml分类器替换即可。


源码+图片下载:http://download.csdn.net/detail/itismelzp/9385247



评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值