卷积神经网络——FPN(Feature Pyramid Networks)介绍

FPN(Feature Pyramid Networks)是一种用于目标检测的特征金字塔网络,旨在处理不同尺度的物体检测。通过自下而上的特征传递和自上而下的上采样,结合横向连接,FPN能在保持高层语义的同时获取低层细节,有效提高小物体检测的准确性。文章对比了几种金字塔方案,并详细解释了FPN的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FPN(Feature Pyramid Networks):特征金字塔网络,是用来提取不同尺度特征图的,提供给后面的网络执行预测任务。
为什么需要FPN呢?简要介绍一下,在目标检测的网络中,要识别不同大小的物体是该网络实现检测的基本的需要。最常见的方法就是对图像金字塔取特征图,但是该方法需要大量的算力和内存,后面又使用了其他几种方法,我们下面会介绍,最终作者提出了FPN的网络能够实现对小物体很好的检测效果。这是为什么呢?后面介绍。

FPN的论文链接: https://arxiv.org/abs/1612.03144
论文翻译:https://blog.csdn.net/itlilyer/article/details/108952700

几种金字塔方案

这里借用一下FPN论文里面的图:
在这里插入图片描述第一种金字塔: 也就是图中的a,翻译一下大概意思是使用图像金子塔来创建一个特征金字塔,每个尺度的图像分别计算其特征。也就是说要先使用原图来创建一个图像金字塔,然后再计算每个尺度图像的特征生成一个特征金字塔。这种金字塔大量用于手工创建特征,对最终的精度也起到了至关重要的作用,为了达到比较好的精度结果,每一个octave可能需要10种不同scale。(octave 在FPN的论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值