a
=
[
a
1
⋮
a
n
]
,
b
=
[
b
1
⋮
b
n
]
a = \begin{bmatrix} a_1 \\ \vdots\\ a_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ \vdots\\ b_n \end{bmatrix}
a=⎣⎢⎡a1⋮an⎦⎥⎤,b=⎣⎢⎡b1⋮bn⎦⎥⎤
a
T
b
=
∑
i
=
1
n
a
i
b
i
,
a
b
T
=
[
a
1
b
1
⋯
a
1
b
n
⋯
⋯
⋯
a
n
b
1
⋯
a
n
b
n
]
,
a^T b = \sum_{i=1}^{n} a_i b_i, \quad ab^T = \begin{bmatrix} a_1b_1 & \cdots & a_1 b_n \\ \cdots & \cdots & \cdots \\ a_n b_1 & \cdots & a_n b_n \end{bmatrix},
aTb=i=1∑naibi,abT=⎣⎡a1b1⋯anb1⋯⋯⋯a1bn⋯anbn⎦⎤,
a
b
T
ab^T
abT的秩为1,其所有行或列都线性相关,只有一个非零特征值:
λ
(
a
b
T
)
=
a
T
b
\lambda(ab^T) = a^Tb
λ(abT)=aTb.
列变换
[ a 1 b 1 ⋯ a 1 b n ⋯ ⋯ ⋯ a n b 1 ⋯ a n b n ] [ 1 − b 2 b 1 − b 3 b 1 ⋯ − b n b 1 1 0 ⋯ 0 ⋱ ⋱ ⋮ 1 0 1 ] = [ a 1 b 1 ⋯ 0 ⋯ ⋯ ⋯ a n b 1 ⋯ 0 ] \begin{bmatrix} a_1b_1 & \cdots & a_1 b_n \\ \cdots & \cdots & \cdots \\ a_n b_1 & \cdots & a_n b_n \end{bmatrix} \begin{bmatrix} 1 & -\frac{b_2}{b_1} &-\frac{b_3}{b_1} & \cdots& -\frac{b_n}{b_1} \\ &1& 0 & \cdots & 0 \\ & & \ddots &\ddots&\vdots\\ &&&1& 0\\ &&&&1 \end{bmatrix} = \begin{bmatrix} a_1b_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ a_n b_1 & \cdots &0 \end{bmatrix} ⎣⎡a1b1⋯anb1⋯⋯⋯a1bn⋯anbn⎦⎤⎣⎢⎢⎢⎢⎢⎡1−b1b21−b1b30⋱⋯⋯⋱1−b1bn0⋮01⎦⎥⎥⎥⎥⎥⎤=⎣⎡a1b1⋯anb1⋯⋯⋯0⋯0⎦⎤
行变换
[
1
−
a
2
a
1
1
−
a
3
a
1
0
1
⋮
⋮
⋱
⋱
−
a
n
a
1
0
⋯
0
1
]
[
a
1
b
1
⋯
0
⋯
⋯
⋯
a
n
b
1
⋯
0
]
=
[
a
1
b
1
0
⋯
0
0
0
⋯
0
⋯
⋯
⋯
⋯
0
0
⋯
0
]
\begin{bmatrix} 1 & & & & \\ -\frac{a_2}{a_1}&1& && \\ -\frac{a_3}{a_1}& 0 & 1 && \\ \vdots &\vdots&\ddots&\ddots&\\ -\frac{a_n}{a_1} &0&\cdots&0&1 \end{bmatrix} \begin{bmatrix} a_1b_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ a_n b_1 & \cdots &0 \end{bmatrix} = \begin{bmatrix} a_1b_1 & 0 &\cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots &0 \end{bmatrix}
⎣⎢⎢⎢⎢⎢⎡1−a1a2−a1a3⋮−a1an10⋮01⋱⋯⋱01⎦⎥⎥⎥⎥⎥⎤⎣⎡a1b1⋯anb1⋯⋯⋯0⋯0⎦⎤=⎣⎢⎢⎡a1b10⋯000⋯0⋯⋯⋯⋯00⋯0⎦⎥⎥⎤
记
P
a
1
=
[
1
−
a
2
a
1
1
−
a
3
a
1
0
1
⋮
⋮
⋱
⋱
−
a
n
a
1
0
⋯
0
1
]
,
P
b
1
=
[
1
−
b
2
b
1
−
b
3
b
1
⋯
−
b
n
b
1
1
0
⋯
0
⋱
⋱
⋮
1
0
1
]
P_{a1} = \begin{bmatrix} 1 & & & & \\ -\frac{a_2}{a_1}&1& && \\ -\frac{a_3}{a_1}& 0 & 1 && \\ \vdots &\vdots&\ddots&\ddots&\\ -\frac{a_n}{a_1} &0&\cdots&0&1 \end{bmatrix}, P_{b1} = \begin{bmatrix} 1 & -\frac{b_2}{b_1} &-\frac{b_3}{b_1} & \cdots& -\frac{b_n}{b_1} \\ &1& 0 & \cdots & 0 \\ & & \ddots &\ddots&\vdots\\ &&&1& 0\\ &&&&1 \end{bmatrix}
Pa1=⎣⎢⎢⎢⎢⎢⎡1−a1a2−a1a3⋮−a1an10⋮01⋱⋯⋱01⎦⎥⎥⎥⎥⎥⎤,Pb1=⎣⎢⎢⎢⎢⎢⎡1−b1b21−b1b30⋱⋯⋯⋱1−b1bn0⋮01⎦⎥⎥⎥⎥⎥⎤
特征分解与对角化
(
a
b
T
)
a
=
a
(
b
T
a
)
=
(
a
T
b
)
a
(ab^T)a = a(b^Ta) = (a^Tb)a
(abT)a=a(bTa)=(aTb)a
说明
a
a
a 是特征值
a
T
b
a^Tb
aTb 对应的特征向量,剩下
n
−
1
n-1
n−1个特征向量只要满足和
b
b
b正交即可!