秩一矩阵的分解

a = [ a 1 ⋮ a n ] , b = [ b 1 ⋮ b n ] a = \begin{bmatrix} a_1 \\ \vdots\\ a_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ \vdots\\ b_n \end{bmatrix} a=a1an,b=b1bn
a T b = ∑ i = 1 n a i b i , a b T = [ a 1 b 1 ⋯ a 1 b n ⋯ ⋯ ⋯ a n b 1 ⋯ a n b n ] , a^T b = \sum_{i=1}^{n} a_i b_i, \quad ab^T = \begin{bmatrix} a_1b_1 & \cdots & a_1 b_n \\ \cdots & \cdots & \cdots \\ a_n b_1 & \cdots & a_n b_n \end{bmatrix}, aTb=i=1naibi,abT=a1b1anb1a1bnanbn,
a b T ab^T abT的秩为1,其所有行或列都线性相关,只有一个非零特征值: λ ( a b T ) = a T b \lambda(ab^T) = a^Tb λ(abT)=aTb.


列变换

[ a 1 b 1 ⋯ a 1 b n ⋯ ⋯ ⋯ a n b 1 ⋯ a n b n ] [ 1 − b 2 b 1 − b 3 b 1 ⋯ − b n b 1 1 0 ⋯ 0 ⋱ ⋱ ⋮ 1 0 1 ] = [ a 1 b 1 ⋯ 0 ⋯ ⋯ ⋯ a n b 1 ⋯ 0 ] \begin{bmatrix} a_1b_1 & \cdots & a_1 b_n \\ \cdots & \cdots & \cdots \\ a_n b_1 & \cdots & a_n b_n \end{bmatrix} \begin{bmatrix} 1 & -\frac{b_2}{b_1} &-\frac{b_3}{b_1} & \cdots& -\frac{b_n}{b_1} \\ &1& 0 & \cdots & 0 \\ & & \ddots &\ddots&\vdots\\ &&&1& 0\\ &&&&1 \end{bmatrix} = \begin{bmatrix} a_1b_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ a_n b_1 & \cdots &0 \end{bmatrix} a1b1anb1a1bnanbn1b1b21b1b301b1bn001=a1b1anb100

行变换

[ 1 − a 2 a 1 1 − a 3 a 1 0 1 ⋮ ⋮ ⋱ ⋱ − a n a 1 0 ⋯ 0 1 ] [ a 1 b 1 ⋯ 0 ⋯ ⋯ ⋯ a n b 1 ⋯ 0 ] = [ a 1 b 1 0 ⋯ 0 0 0 ⋯ 0 ⋯ ⋯ ⋯ ⋯ 0 0 ⋯ 0 ] \begin{bmatrix} 1 & & & & \\ -\frac{a_2}{a_1}&1& && \\ -\frac{a_3}{a_1}& 0 & 1 && \\ \vdots &\vdots&\ddots&\ddots&\\ -\frac{a_n}{a_1} &0&\cdots&0&1 \end{bmatrix} \begin{bmatrix} a_1b_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ a_n b_1 & \cdots &0 \end{bmatrix} = \begin{bmatrix} a_1b_1 & 0 &\cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots &0 \end{bmatrix} 1a1a2a1a3a1an100101a1b1anb100=a1b100000000

P a 1 = [ 1 − a 2 a 1 1 − a 3 a 1 0 1 ⋮ ⋮ ⋱ ⋱ − a n a 1 0 ⋯ 0 1 ] , P b 1 = [ 1 − b 2 b 1 − b 3 b 1 ⋯ − b n b 1 1 0 ⋯ 0 ⋱ ⋱ ⋮ 1 0 1 ] P_{a1} = \begin{bmatrix} 1 & & & & \\ -\frac{a_2}{a_1}&1& && \\ -\frac{a_3}{a_1}& 0 & 1 && \\ \vdots &\vdots&\ddots&\ddots&\\ -\frac{a_n}{a_1} &0&\cdots&0&1 \end{bmatrix}, P_{b1} = \begin{bmatrix} 1 & -\frac{b_2}{b_1} &-\frac{b_3}{b_1} & \cdots& -\frac{b_n}{b_1} \\ &1& 0 & \cdots & 0 \\ & & \ddots &\ddots&\vdots\\ &&&1& 0\\ &&&&1 \end{bmatrix} Pa1=1a1a2a1a3a1an100101,Pb1=1b1b21b1b301b1bn001

特征分解与对角化

( a b T ) a = a ( b T a ) = ( a T b ) a (ab^T)a = a(b^Ta) = (a^Tb)a (abT)a=a(bTa)=(aTb)a
说明 a a a 是特征值 a T b a^Tb aTb 对应的特征向量,剩下 n − 1 n-1 n1个特征向量只要满足和 b b b正交即可!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值