线性规划——对偶问题的对偶问题

原对偶问题

(2) max ⁡ y    b T y s . t .    A T y + s = c s ≥ 0 \max_y\;b^Ty\\s.t.\;A^Ty+s=c\\s\geq 0\tag{2} ymaxbTys.t.ATy+s=cs0(2)
A ∈ R m × n , s ∈ R n , y ∈ R m A \in \R^{m\times n}, s \in \R^{n}, y \in \R^{m} ARm×n,sRn,yRm

等价问题:
(2) min ⁡ y    − b T y s . t .    A T y + s = c s ≥ 0 \min_y\;-b^Ty\\s.t.\;A^Ty+s=c\\s\geq 0\tag{2} yminbTys.t.ATy+s=cs0(2)
对偶问题的推导参见博文《线性规划——对偶问题的推导》。


引入拉格朗日函数: L ( x , y , s ) = − b T y + x T ( A T y + s − c ) L(x,y,s) = -b^Ty +x^T(A^Ty+s-c) L(x,y,s)=bTy+xT(ATy+sc)
g ( x ) ≜ inf ⁡ y , s L ( x , y , s ) = inf ⁡ y , s { − c T x + ( A x − b ) T y + x T s } = − c T x + inf ⁡ y ( A T x − b ) T y + inf ⁡ s x T s g(x) \triangleq \inf_{y,s}L(x,y,s) \\= \inf_{y,s} \{-c^Tx +(Ax-b)^Ty +x^Ts\} \\=-c^Tx +\inf_y(A^Tx-b)^Ty +\inf_sx^Ts g(x)y,sinfL(x,y,s)=y,sinf{cTx+(Axb)Ty+xTs}=cTx+yinf(ATxb)Ty+sinfxTs

分开来看,
inf ⁡ y ( A x − b ) T y = { 0 ,                        A x − b = 0 − ∞ ,                o t h e r w i s e \inf_y(Ax-b)^Ty \\=\left\{ \begin{array}{lr} 0, \;\;\;\;\;\;\;\;\;\;\;Ax-b=0& \\ -\infty, \;\;\;\;\;\;\;otherwise& \end{array} \right. yinf(Axb)Ty={0,Axb=0,otherwise
inf ⁡ s x T s = { 0 ,                        z ≥ 0 − ∞ ,                o t h e r w i s e \inf_sx^Ts \\=\left\{ \begin{array}{lr} 0, \;\;\;\;\;\;\;\;\;\;\;z \geq0& \\ -\infty, \;\;\;\;\;\;\;otherwise& \end{array} \right. sinfxTs={0,z0,otherwise
显然,最大化 g ( x ) g(x) g(x) 只有在其有下界时有意义。因此得到约束条件: A x − b = 0 , z ≥ 0 。 Ax-b=0, z \geq0。 Axb=0,z0
原对偶问题的对偶问题为: m a x i m i z e      − c T x s . t .      A x − b = 0 z ≥ 0 maximize \;\;-c^Tx \\s.t.\;\;Ax-b=0\\z \geq0 maximizecTxs.t.Axb=0z0等价于 m i n i m i z e      c T x s . t .      A x − b = 0 z ≥ 0 minimize \;\;c^Tx \\s.t.\;\;Ax-b=0\\z \geq0 minimizecTxs.t.Axb=0z0即为线性规划的标准形式。
得出结论: 线性规划的对偶问题的对偶问题是原问题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值