对偶范数

令 ||·|| 为 R n \R^n Rn 上的范数,定义其对偶范数 ∣ ∣ ⋅ ∣ ∣ ∗ ||·||_* 的为: ∣ ∣ z ∣ ∣ ∗ = sup ⁡ { z T x ∣      ∣ ∣ x ∣ ∣ ≤ 1 } . ||z||_* = \sup\{z^Tx|\;\; ||x|| \leq 1\}. z=sup{zTxx1}.上式可以看成如下优化问题的最优值: maximize x      z T x s . t .      ∣ ∣ x ∣ ∣ ≤ 1 \text{maximize}_x \;\; z^Tx\\ s.t. \;\;||x|| \leq 1 maximizexzTxs.t.x1此外,还有一些等价定义: ∣ ∣ z ∣ ∣ ∗ = sup ⁡ ∣ ∣ x ∣ ∣ ≤ 1 z T x = sup ⁡ ∣ ∣ x ∣ ∣ = 1 z T x = sup ⁡ x ≠ 0 z T x ∣ ∣ x ∣ ∣ ||z||_* = \sup_{||x|| \leq 1}z^Tx=\sup_{||x|| = 1}z^Tx=\sup_{x \neq 0}\frac{z^Tx}{||x||} z=x1supzTx=x=1supzTx=x=0supxzTx事实上,对偶范数可以解释成 z T z^T zT 的算子范数,即 1 × n 1\times n 1×n矩阵 z T z^T zT 的诱导范数。

由上述定义我们可以得到对所有 x 和 z 都成立的不等式:
z T x ≤ ∣ ∣ x ∣ ∣    ∣ ∣ z ∣ ∣ ∗ z^Tx \leq ||x||\;||z||_* zTxxz
霍尔德(Hölder)不等式可以直接得出: l p − l_p- lp范数的对偶范数是 l q − l_q- lq范数,其中 1 p + 1 q = 1 \frac1p+\frac1q=1 p1+q1=1
z T x ≤ ∣ ∣ x ∣ ∣ p ∣ ∣ z ∣ ∣ q ⇒ ∣ ∣ z ∣ ∣ ∗ = sup ⁡ x ≠ 0 z T x ∣ ∣ x ∣ ∣ p = ∣ ∣ z ∣ ∣ q z^Tx \leq ||x||_p||z||_q\\\Rightarrow ||z||_* =\sup_{x \neq 0}\frac{z^Tx}{||x||_p}=||z||_q zTxxpzqz=x=0supxpzTx=zq


由此可以得出一些简单结论:

  • l 2 − l_2- l2范数的对偶范数是 l 2 − l_2- l2范数
  • l 1 − l_1- l1范数的对偶范数是 l ∞ − l_\infty- l范数
  • 对偶范数的对偶范数是原范数
相关推荐
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页