引理
设 p , q > 0 , 1 p + 1 q = 1. p,q>0,\frac1p+\frac1q=1. p,q>0,p1+q1=1.则 x 1 p y 1 q ≤ x p + y q ,    ∀    x , y ≥ 0 , x^{\frac1p}y^{\frac1q} \leq \frac xp+ \frac yq,\;\forall\;x,y\geq 0, xp1yq1≤px+qy,∀x,y≥0,等号仅当 x = y x=y x=y 时成立。
证明:
考察对数函数 l o g ( x ) log(x) log(x),她显然是一个凹函数: l o g ( θ x + ( 1 − θ ) y ) ≥ θ l o g ( x ) + ( 1 − θ ) l o g ( y ) log(\theta x+(1-\theta)y) \geq \theta log(x) +(1-\theta)log(y) log(θx+(1−θ)y)≥θlog(x)+(1−θ)log(y)取 θ = 1 p \theta = \frac1p θ=p1,则 1 − θ = 1 q 1-\theta = \frac1q 1−θ=q1,故 l o g ( 1 p x + 1 q y ) ≥ 1 p l o g ( x ) + 1 q l o g ( y ) log(\frac1p x+\frac1qy) \geq \frac1p log(x) +\frac1qlog(y) log(p1x+q1y)≥p1log(x)+q1log(y)两边同时去指数,得 x p + y q ≥ x 1 p y 1 q \frac xp+ \frac yq \geq x^{\frac1p}y^{\frac1q} px+qy≥xp1yq1
Hölder 不等式
对引理中的不等式,做如下替换
x
i
=
a
i
p
∑
j
=
1
n
a
j
p
,
    
y
i
=
b
i
q
∑
j
=
1
n
b
j
q
x_i = \frac{a_i^p}{\sum_{j=1}^{n}a_j^p},\;\;y_i = \frac{b_i^q}{\sum_{j=1}^{n}b_j^q}
xi=∑j=1najpaip,yi=∑j=1nbjqbiq得到 n 个不等式:
a
i
b
i
(
∑
j
=
1
n
a
j
p
)
1
p
(
∑
j
=
1
n
b
j
q
)
1
q
≤
1
p
a
i
p
∑
j
=
1
n
a
j
p
+
1
q
b
i
q
∑
j
=
1
n
b
j
q
\frac{a_ib_i}{(\sum_{j=1}^{n}a_j^p)^{\frac1p}(\sum_{j=1}^{n}b_j^q)^{\frac1q}} \leq \frac1p\frac{a_i^p}{\sum_{j=1}^{n}a_j^p}+\frac1q\frac{b_i^q}{\sum_{j=1}^{n}b_j^q}
(∑j=1najp)p1(∑j=1nbjq)q1aibi≤p1∑j=1najpaip+q1∑j=1nbjqbiq将上式两边对
i
=
1
,
2
,
⋅
⋅
⋅
,
n
i=1,2,···,n
i=1,2,⋅⋅⋅,n 求和,就得到
∑
i
=
1
n
a
i
b
i
(
∑
j
=
1
n
a
j
p
)
1
p
(
∑
j
=
1
n
b
j
q
)
1
q
≤
1
p
+
1
q
=
1
,
\frac{\sum_{i=1}^{n}a_ib_i}{(\sum_{j=1}^{n}a_j^p)^{\frac1p}(\sum_{j=1}^{n}b_j^q)^{\frac1q}} \leq \frac1p+\frac1q = 1,
(∑j=1najp)p1(∑j=1nbjq)q1∑i=1naibi≤p1+q1=1,
⇒
∑
i
=
1
n
a
i
b
i
≤
(
∑
j
=
1
n
a
j
p
)
1
p
(
∑
j
=
1
n
b
j
q
)
1
q
\Rightarrow\sum_{i=1}^{n}a_ib_i \leq (\sum_{j=1}^{n}a_j^p)^{\frac1p}(\sum_{j=1}^{n}b_j^q)^{\frac1q}
⇒i=1∑naibi≤(j=1∑najp)p1(j=1∑nbjq)q1
上式要求
a
i
,
b
i
≥
0
a_i,b_i \geq 0
ai,bi≥0。否则,需要给等式右端的
a
i
,
b
i
a_i,b_i
ai,bi 加上绝对值,得到如下不等式:
a
T
b
≤
∣
∣
a
∣
∣
p
∣
∣
b
∣
∣
q
a^Tb \leq ||a||_p||b||_q
aTb≤∣∣a∣∣p∣∣b∣∣q事实上,
∣
∣
⋅
∣
∣
q
||·||_q
∣∣⋅∣∣q正是
∣
∣
⋅
∣
∣
p
||·||_p
∣∣⋅∣∣p的对偶范数。