李沐精读论文:GAN《Generative Adversarial Nets》by Ian J. Goodfellow

本文深入解析了Generative Adversarial Networks(GAN)的原理与实践,包括生成器G和判别器D的目标函数、训练过程、理论结果与优势。文章详细介绍了GAN如何通过两者的对抗训练达到数据分布的拟合,并探讨了其在图像生成、模型训练中的应用和挑战。此外,还提供了相关资源和代码实现。
摘要由CSDN通过智能技术生成
论文: https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

视频:GAN论文逐段精读【论文精读】_哔哩哔哩_bilibili

课程:CS231n 2022PPT笔记- 生成模型Generative Modeling

​李宏毅机器学习——对抗生成网络(GAN)_iwill323的博客-CSDN博客

拓展网站:This Person Does Not Exist

https://www.reddit.com/r/MachineLearning/top/?t=month

https://crypko.ai/

博文:本文主要参考下面博文并摘取了文字和图片李沐论文精读系列一: ResNet、Transformer、GAN、BERT_神洛华的博客-

要想较为详细了解GAN,推荐博文:生成对抗网络,从DCGAN到StyleGAN、pixel2pixel,人脸生成和图像翻译。_神洛华的博客-CSDN博客_人像油画生成 对抗网络

目录

1.简介

2 导论

3 相关工作

4 目标函数及其求解

目标函数

1.生成器G

2.判别器D

3.两个模型同时训练       

模型训练过程演示

迭代求解过程

5 理论结果:全局最优解 pg​=pdata​

收敛证明

6 GAN的优势与缺陷

优势

问题

7代码实现

8 影响

9. 关于损失函数的讨论

二元分类

discriminator

generator


1.简介

        GANs(Generative Adversarial Networks,生成对抗网络)是从对抗训练中估计一个生成模型,其由两个基础神经网络组成,即生成器神经网络G(Generator Neural Network) 和判别器神经网络D(Discriminator Neural Network)

  生成器G从给定噪声中(一般是指均匀分布或者正态分布)采样来合成数据,判别器D用于判别样本是真实样本还是G生成的样本。G的目标就是尽量生成真实的图片去欺骗判别网络D,使D犯错;而D的目标就是尽量把G生成的图片和真实的图片分别开来。二者互相博弈,共同进化,最理想的状态下,G可以生成足以“以假乱真”的图片G(z);对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5,此时噪声分布接近真实数据分布。

发展:

2 导论

  深度学习是用来发现一些丰富的、有层次的模型,这些模型能够对AI里的各种数据做一个概率分布的表示。深度学习网络只是一种手段而已。

     深度学习不仅是学习网络,更是对数据分布的一种表示。这和统计学习方法里面的观点不谋而合,后者认为机器学习模型从概率论的角度讲,就是一个概率分布Pθ​(X) (这里以概率密度函数来代表概率分布)

     机器学习的任务就是求最优参数θt​ ,使得概率分布 Pθ​(X) 最大(即已发生的事实,其对应的概率理应最大)。    

     argmax 函数代表的是取参数使得数据的概率密度最大。求解最优参数θt​的过程,我们称之为模型的训练过程( Training )

  深度学习在判别模型上取得了很好的效果,但是在生成模型上比较差。难点在于最大化似然函数时,要对概率分布做很多近似,近似带来了很大的计算困难。

  本文的核心观点就是, 不用再去近似似然函数了,可以用更好的办法(GAN)来计算模型

  GAN是一个框架,里面的模型都是MLP。生成器G这个MLP的输入是随机噪声,通常是高斯分布,然后将其映射到任何一个我们想去拟合的分布;判别器D也是MLP,所以可以通过误差的反向传递来训练,而不需要像使用马尔可夫链这样的算法对一个分布进行复杂的采样。这样模型就比较简单,计算上有优势。

3 相关工作

  之前的生成模型总是想构造一个分布函数出来,同时这些函数提供了一些参数可以学习。这些参数通过最大化对数似然函数来求解。这样做的缺点是,采样一个分布时,求解参数算起来很难,特别是高维数据。因为这样计算很困难,所以最近有一些Generative Machines,不再去构造分布函数,而是学习一个模型来近似这个分布。

     前者真的是在数学上学习出一个分布,明明白白知道数据是什么分布 ,里面的均值方差等等到底是什么东西。而GAN就是通过一个模型来近似分布的结果,而不需要构造分布函数。这样计算起来简单,缺点是不知道最终的分布到底是什么样子。

  对f的期望求导,等价于对f自己求导。这也是为什么通过误差反向传递来对GAN求解。

生成模型可以解决密度估计问题,有两种方式:

  • 显式密度模型会显式地给出一个和输入数据的分布pmodel(x)
  • 隐式密度模型训练一个模型,从输入数据中采样,并直接输出样本,而不用显式地给出分布的
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值