✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
时间序列预测在金融、气象、能源等多个领域都具有重要的应用价值。传统的时间序列模型,如自回归移动平均(ARMA)模型及其变种,通常基于线性假设,难以捕捉时间序列中的非线性特征和波动性。为了克服这些局限性,本文提出了一种基于广义自回归条件异方差(GARCH)模型与长短期记忆(LSTM)神经网络的混合方法,用于时间序列预测研究。该方法首先利用GARCH模型对时间序列的波动性进行建模,提取残差序列,然后将残差序列输入到LSTM网络中,学习其非线性特征。最后,将GARCH模型的预测结果与LSTM网络的预测结果相结合,得到最终的预测值。实验结果表明,相比于传统的线性模型和单一的LSTM模型,该混合模型在预测精度和稳定性方面均有显著提升,尤其是在波动性较强的时间序列预测中表现更为突出。
关键词: 时间序列预测,GARCH模型,LSTM神经网络,混合模型,波动性建模,金融市场
1. 引言
时间序列预测是指利用历史数据来预测未来一段时间内变量的取值。它是现代科学研究和工程实践中的一个重要组成部分,广泛应用于金融风险管理、股票价格预测、能源需求预测、天气预报等领域。准确的时间序列预测有助于决策者做出明智的判断,从而降低风险,提高效率。
传统的时间序列模型,如自回归(AR)、移动平均(MA)、自回归移动平均(ARMA)模型及其变种,例如差分整合移动平均自回归模型(ARIMA),是建立在时间序列数据线性关系的假设之上的。然而,现实世界中的许多时间序列数据,尤其是金融时间序列,往往呈现出复杂的非线性特征和波动性聚集效应,使得传统的线性模型难以有效捕捉这些特征,从而导致预测精度不高。
近年来,机器学习方法,尤其是深度学习方法,在时间序列预测领域取得了显著的进展。长短期记忆(LSTM)神经网络作为一种循环神经网络(RNN)的变体,能够有效捕捉时间序列中的长期依赖关系,并在许多实际应用中取得了优异的性能。然而,LSTM模型本身并不能直接处理时间序列的波动性,尤其是在处理具有高度波动性的金融数据时,其预测性能可能会受到影响。
因此,本文提出了一种基于广义自回归条件异方差(GARCH)模型与长短期记忆(LSTM)神经网络的混合方法,旨在充分利用GARCH模型对时间序列波动性建模的优势和LSTM模型对非线性关系建模的优势,从而提高时间序列预测的精度和稳定性。
2. 相关研究
近年来,国内外学者对时间序列预测进行了大量的研究,并提出了各种各样的模型和方法。
- 线性时间序列模型:
以ARIMA模型为代表的线性时间序列模型,在过去几十年里得到了广泛的应用。这些模型基于时间序列数据之间的线性相关性,通过识别时间序列的自相关和偏自相关结构,建立预测模型。然而,线性模型在处理非线性时间序列数据时存在明显的局限性。
- 非线性时间序列模型:
为了克服线性模型的局限性,学者们提出了各种非线性时间序列模型,例如阈值自回归(TAR)模型、平滑转移自回归(STAR)模型、人工神经网络(ANN)等。这些模型能够捕捉时间序列中的非线性特征,但在模型选择和参数估计方面往往比较复杂。
- GARCH类模型:
广义自回归条件异方差(GARCH)模型及其变种,如EGARCH、GJR-GARCH等,是专门用于对时间序列波动性进行建模的经典模型。GARCH模型能够捕捉时间序列中的波动性聚集效应,并广泛应用于金融风险管理和期权定价等领域。
- 基于机器学习的时间序列模型:
随着机器学习技术的发展,越来越多的学者开始利用机器学习方法进行时间序列预测。支持向量机(SVM)、随机森林(RF)、梯度提升决策树(GBDT)等机器学习模型在时间序列预测中取得了不错的性能。近年来,深度学习方法,特别是LSTM神经网络,在时间序列预测领域受到了广泛的关注。
- 混合模型:
为了充分利用不同模型的优势,学者们提出了各种混合模型。例如,将ARIMA模型与GARCH模型相结合,用于同时捕捉时间序列的线性和非线性特征。近年来,也有学者将LSTM神经网络与GARCH模型相结合,用于时间序列预测,并取得了良好的效果。
3. 模型构建
本文提出的基于GARCH-LSTM模型的混合方法,其核心思想是首先利用GARCH模型对时间序列的波动性进行建模,提取残差序列,然后将残差序列输入到LSTM网络中,学习其非线性特征。最后,将GARCH模型的预测结果与LSTM网络的预测结果相结合,得到最终的预测值。具体步骤如下:
3.1 GARCH模型
GARCH模型是一种用于描述时间序列波动性的模型。其基本思想是认为当前时刻的条件方差依赖于过去时刻的条件方差和过去时刻的残差平方。
3.2 LSTM神经网络
LSTM神经网络是一种特殊的循环神经网络,能够有效捕捉时间序列中的长期依赖关系。LSTM网络通过引入记忆单元(Memory Cell)和三个门控单元(输入门、遗忘门、输出门)来解决传统RNN在处理长序列时容易出现的梯度消失和梯度爆炸问题。
LSTM网络的结构如下:
- 输入门(Input Gate):
控制当前时刻的输入信息有多少被添加到记忆单元中。
- 遗忘门(Forget Gate):
控制上一时刻的记忆单元信息有多少被遗忘。
- 输出门(Output Gate):
控制当前时刻的记忆单元信息有多少被输出。
- 记忆单元(Memory Cell):
存储过去的信息,并根据输入门和遗忘门的控制进行更新。
3.3 混合模型
本文提出的GARCH-LSTM混合模型,其流程如下:
- 数据预处理:
对原始时间序列数据进行预处理,例如去除异常值、进行平稳性检验和差分处理。
- GARCH建模:
利用GARCH模型对时间序列数据的波动性进行建模,并提取残差序列。
- LSTM建模:
将GARCH模型的残差序列作为LSTM网络的输入,训练LSTM模型,学习残差序列中的非线性特征。
- 预测:
利用GARCH模型预测未来一段时间的条件方差,并利用LSTM模型预测未来一段时间的残差序列。
- 结果融合:
将GARCH模型的预测结果与LSTM网络的预测结果相结合,得到最终的预测值。
4. 实验结果与分析
为了验证本文提出的GARCH-LSTM混合模型的有效性,我们选取了沪深300指数的历史数据作为实验数据,并将该混合模型与传统的ARIMA模型和单一的LSTM模型进行比较。
4.1 数据集
实验数据集为2010年1月1日至2023年12月31日的沪深300指数日收盘价数据。我们将数据集划分为训练集(2010年1月1日至2021年12月31日)和测试集(2022年1月1日至2023年12月31日)。
4.2 评价指标
我们采用以下评价指标来评估模型的预测性能:
- 均方根误差(RMSE):
RMSE越小,模型的预测精度越高。
- 平均绝对误差(MAE):
MAE越小,模型的预测精度越高。
- 平均绝对百分比误差(MAPE):
MAPE越小,模型的预测精度越高。
4.3 结果分析
实验结果表明,GARCH-LSTM混合模型在时间序列预测方面具有以下优点:
- 能够有效捕捉时间序列的波动性:
GARCH模型能够有效地对时间序列的波动性进行建模,提取残差序列,从而降低了时间序列的非平稳性,提高了预测的准确性。
- 能够有效捕捉时间序列的非线性特征:
LSTM网络能够有效捕捉时间序列中的长期依赖关系和非线性特征,从而提高了预测的准确性。
- 具有较强的鲁棒性:
GARCH-LSTM混合模型能够有效地处理具有波动性和非线性特征的时间序列数据,具有较强的鲁棒性。
5. 结论与展望
本文提出了一种基于GARCH-LSTM模型的混合方法,用于时间序列预测研究。该方法首先利用GARCH模型对时间序列的波动性进行建模,提取残差序列,然后将残差序列输入到LSTM网络中,学习其非线性特征。最后,将GARCH模型的预测结果与LSTM网络的预测结果相结合,得到最终的预测值。实验结果表明,相比于传统的ARIMA模型和单一的LSTM模型,该混合模型在预测精度和稳定性方面均有显著提升。
- 均方根误差(RMSE):
⛳️ 运行结果
🔗 参考文献
[1] 朱顺泉.计量经济分析及其Python应用[M].清华大学出版社,2020.
[2] 佚名.金融计量学 基于R和PYTHON 大中专文科经管[M].中国人民大学出版社,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇