利用基于先验算法(PICCS)的fMRI研究的压缩传感重建中的时间冗余附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

功能性磁共振成像(fMRI)已成为神经科学领域不可或缺的工具,它通过检测与神经活动相关联的血氧水平依赖(BOLD)信号,为研究大脑功能提供了独特的窗口。然而,传统的fMRI数据采集方式在时空分辨率上受到一定限制。为了提高数据采集效率,缩短扫描时间,并减少受试者的不适,压缩传感(Compressed Sensing,CS)技术应运而生。CS利用信号的稀疏性,以远低于奈奎斯特采样率的频率采集数据,并依靠重建算法恢复原始信号。在fMRI领域,应用CS不仅可以加速数据采集,还能在一定程度上减少运动伪影和生理噪声的影响。然而,仅仅依赖于单一空间的稀疏性往往难以获得高质量的重建结果。因此,如何有效地利用fMRI数据固有的时间冗余,提高CS重建的性能,一直是研究的热点。本文将探讨基于先验算法(Prior Information Combined Compressed Sensing,PICCS)的fMRI研究,深入分析时间冗余在CS重建中的重要性及其应用。

一、 压缩传感在fMRI重建中的基本原理

传统的fMRI数据采集通常采用序列式扫描,这意味着需要花费较长的时间才能获取完整的大脑图像。CS技术则打破了这一限制,它利用信号在特定变换域上的稀疏性,例如在小波变换或离散余弦变换(DCT)域中,BOLD信号往往只有少数几个重要的系数。通过随机欠采样的方式采集k空间数据,然后通过非线性优化算法,在稀疏性约束下重建原始图像。

CS重建的核心在于找到一个稀疏表示的解,使其既满足欠采样数据的约束,又能尽可能地保持信号的稀疏性。常用的重建算法包括迭代硬阈值(Iterative Hard Thresholding,IHT)、梯度投影稀疏重建(Gradient Projection for Sparse Reconstruction,GPSR)等。然而,这些算法往往只关注空间域的稀疏性,忽略了fMRI数据在时间维度上的高度相关性。

二、 fMRI数据的时间冗余及其来源

fMRI数据的时间冗余是指相邻时间点之间的大脑活动模式具有很强的相似性。这种冗余性来源于多个方面:

  • 神经活动的连续性:

     大脑活动并非瞬时发生,而是具有一定的持续时间。即使在执行不同的认知任务时,大脑中也会存在一些持续激活的区域,如默认模式网络(Default Mode Network,DMN)。

  • 血流动力学响应(Hemodynamic Response Function,HRF):

     HRF是神经活动与BOLD信号之间的转换函数,它具有平滑效应,导致BOLD信号在时间上呈现出缓慢变化。

  • 实验设计的限制:

     常见的fMRI实验设计,如区块设计和事件相关设计,都会导致BOLD信号在一定时间段内保持相对稳定。

充分利用fMRI数据的时间冗余,可以显著提高CS重建的鲁棒性和准确性。这意味着在重建过程中,不仅要考虑空间域的稀疏性,还要将时间信息纳入考量,引导重建算法找到更加符合实际的解。

三、 基于先验算法(PICCS)的CS重建方法

PICCS算法是一种结合先验信息的CS重建方法,它通过将已知的图像或模型作为先验知识,引导重建过程,从而提高重建质量。在fMRI领域,PICCS算法可以通过以下方式利用时间冗余:

  • 时间域正则化: 在重建目标函数中加入时间域正则化项,例如时间总变差(Temporal Total Variation,TTV)。TTV鼓励相邻时间点之间的信号差异尽可能小,从而利用了BOLD信号的平滑性。数学表达式如下:

    TTV(x) = Σ |x(t+1) - x(t)|

    其中,x(t)表示t时刻的fMRI图像。

  • 参考图像引导: 利用已有的高质量fMRI数据或图谱作为参考图像,通过非局部均值(Non-Local Means,NLM)或块匹配三维(Block-Matching 3D,BM3D)等方法,将参考图像的结构信息传递到欠采样数据的重建过程中。这种方法能够有效地减少噪声和伪影,提高重建图像的细节。

  • 动态模型约束: 构建基于生理模型的动态模型,例如基于HRF的模型,并将该模型作为约束条件加入到重建目标函数中。这种方法能够更准确地模拟BOLD信号的时空变化,提高重建的生理可信度。

四、 PICCS算法在fMRI研究中的应用实例

PICCS算法已被广泛应用于各种fMRI研究中,例如:

  • 加速静态连接组研究: 在静态连接组研究中,需要采集长时间的静息态fMRI数据。PICCS算法可以有效地加速数据采集,缩短扫描时间,从而提高受试者的依从性。通过时间域正则化,可以有效地去除生理噪声和运动伪影,提高连接组分析的准确性。

  • 改善动态连接组估计: 动态连接组研究旨在揭示大脑连接随时间变化的模式。PICCS算法可以提高单个时间窗内fMRI数据的信噪比,从而改善动态连接组估计的准确性和可靠性。利用HRF模型约束,可以更好地捕捉大脑连接的动态变化。

  • 脑疾病的诊断和预测: 在脑疾病的诊断和预测中,fMRI数据可以作为重要的生物标记物。PICCS算法可以提高病理状态下fMRI数据的重建质量,从而提高诊断的敏感性和特异性。利用参考图像引导,可以更好地捕捉病灶区域的异常信号。

五、 面临的挑战与未来的发展方向

尽管PICCS算法在fMRI研究中取得了显著的进展,但仍然面临着一些挑战:

  • 参数选择的敏感性:

     PICCS算法中涉及到多个参数,例如正则化参数、参考图像选择等。这些参数的选择对重建结果具有重要影响,需要仔细调整。

  • 计算复杂度高:

     尤其是在处理大规模fMRI数据时,PICCS算法的计算复杂度较高,需要耗费大量的计算资源。

  • 先验信息的准确性:

     先验信息的准确性直接影响重建质量。如果先验信息存在偏差,可能会导致重建结果出现错误。

未来的发展方向包括:

  • 自适应参数选择方法:

     开发自适应的参数选择方法,能够根据不同的数据特征自动调整参数,提高算法的鲁棒性。

  • 高效的优化算法:

     研究高效的优化算法,例如基于深度学习的优化算法,能够显著降低计算复杂度,提高重建效率。

  • 多模态先验信息融合:

     将fMRI数据与其他模态的数据,例如结构磁共振成像(sMRI)、脑电图(EEG)等结合起来,利用多模态的先验信息,提高重建的准确性和可靠性。

六、 总结

压缩传感技术为加速fMRI数据采集,提高时空分辨率提供了新的途径。基于先验算法(PICCS)的CS重建方法通过有效地利用fMRI数据的时间冗余,显著提高了重建的性能。时间域正则化、参考图像引导和动态模型约束是常用的利用时间冗余的策略。PICCS算法已被广泛应用于各种fMRI研究中,例如加速静态连接组研究、改善动态连接组估计以及脑疾病的诊断和预测。然而,PICCS算法仍然面临着参数选择的敏感性、计算复杂度高以及先验信息的准确性等挑战。未来的发展方向包括自适应参数选择方法、高效的优化算法以及多模态先验信息融合。随着研究的不断深入,PICCS算法将会在fMRI领域发挥更加重要的作用,为我们更深入地理解大脑功能提供强有力的支持。

⛳️ 运行结果

🔗 参考文献

[1] 张远明.非凸稀疏优化方法在信号重建和有限角CT重建的应用[D].深圳大学,2022.

[2] 鲁玫君.基于压缩感知的4DCBCT重建算法的研究[D].重庆大学,2015.

[3] 龚长城.CT图像重建的正则化方法研究[D].重庆大学[2025-04-10].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值