✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着大数据时代的到来和复杂系统建模需求的日益增长,对时间序列数据进行准确的预测与分析已成为众多学科领域的关键挑战。传统的时序分析方法往往难以有效捕捉数据中的非线性、非平稳以及多尺度特征。近年来,基于深度学习的方法,特别是长短时记忆(LSTM)神经网络,在处理时间序列问题上展现出强大的能力。然而,LSTM在直接处理高度复杂的原始时序数据时,其性能有时会受到数据固有噪声和复杂成分的限制。变分模态分解(Variational Mode Decomposition, VMD)作为一种先进的信号分解技术,能够将非平稳信号分解为一系列相对平稳的本征模态函数(Intrinsic Mode Functions, IMFs)。本文深入研究了将VMD与LSTM相结合的混合模型——VMD-LSTM,旨在 leveraging VMD的分解能力来简化输入信号,从而提升LSTM的预测精度和鲁棒性。本文详细探讨了VMD的基本原理、LSTM的网络结构与优势,并重点阐述了VMD-LSTM模型的构建流程、关键参数设置、协同作用机制以及在不同应用领域的潜在价值。通过理论分析和文献回顾,本文证明了VMD-LSTM模型在处理非平稳、多成分时间序列数据方面的优越性,为复杂系统建模和预测提供了新的思路和方法。
关键词: 变分模态分解(VMD);长短时记忆网络(LSTM);时间序列预测;混合模型;非平稳信号;模态分解。
1. 引言
时间序列数据广泛存在于自然科学、工程技术、经济金融、社会科学等多个领域。例如,气象数据的变化、股票市场的波动、工业设备的运行状态、电力系统的负荷预测以及医疗生理信号等,都是典型的时间序列。对这些时间序列进行准确的分析和预测,对于决策制定、风险管理、资源配置和系统优化具有至关重要的意义。
传统的线性时间序列模型,如自回归(AR)、滑动平均(MA)、自回归滑动平均(ARMA)和自回归积分滑动平均(ARIMA)等,在处理线性、平稳时间序列时表现良好。然而,许多现实世界的时间序列往往是非线性、非平稳的,并且包含多种不同频率和幅度的波动成分。面对这类复杂数据,传统线性模型的预测能力受到严重限制。
近年来,随着计算能力的提升和机器学习技术的飞速发展,基于非线性和非参数方法的时序预测模型受到广泛关注。支持向量机(SVM)、人工神经网络(ANN)等机器学习模型在一定程度上提高了非线性时间序列的预测精度。特别是深度学习技术,凭借其强大的特征提取和模式识别能力,在处理复杂时间序列方面取得了显著进展。循环神经网络(RNN)及其变体,如长短时记忆(LSTM)网络和门控循环单元(GRU),因其能够有效处理序列数据中的长期依赖关系,已成为时间序列预测领域的主流技术之一。
尽管LSTM在处理时间序列方面表现出色,但当面对高度非线性和非平稳的原始数据时,其直接建模的性能有时会受到限制。原始数据中复杂的噪声、多尺度波动和相互耦合的成分,可能会干扰LSTM捕捉主要趋势和周期性特征的能力,导致预测误差增加。
为了克服这一挑战,研究者们开始探索将信号分解技术与深度学习模型相结合的混合方法。信号分解的目的是将复杂信号分解为若干相对简单的、具有物理意义的成分,从而降低建模的难度。常用的信号分解方法包括傅里叶变换(Fourier Transform, FT)、小波变换(Wavelet Transform, WT)、经验模态分解(Empirical Mode Decomposition, EMD)及其改进方法(如EEMD、CEEMDAN)以及近年来兴起的变分模态分解(VMD)。
在这些分解方法中,VMD因其严格的数学理论基础、对噪声的鲁棒性以及能够有效处理非平稳信号而备受关注。VMD将信号分解问题转化为一个变分优化问题,通过迭代求解,将原始信号分解为一系列具有特定中心频率和带宽的本征模态函数(IMFs)。与EMD系列方法不同,VMD的分解过程是非递归的,且分解得到的模态具有更好的数学特性,例如较窄的频谱带宽和较好的平稳性。
将VMD与LSTM相结合,构建VMD-LSTM混合模型,其核心思想是首先利用VMD对原始非平稳时间序列进行分解,得到一系列相对平稳的IMF分量和残余项。然后,对每一个IMF分量(以及残余项)分别建立LSTM预测模型。最后,将每个分量的预测结果进行叠加,得到原始时间序列的最终预测值。这种“分解-预测-重构”的策略,旨在通过降低每个子序列的复杂性,使得LSTM能够更有效地学习其内部规律,从而提高整体预测精度。
本文将深入探讨VMD-LSTM混合模型的理论基础、实现细节、优势和潜在应用。第二部分将回顾VMD和LSTM的基本原理;第三部分详细阐述VMD-LSTM模型的构建流程;第四部分讨论模型的协同作用机制和关键参数选择;第五部分探讨VMD-LSTM在不同领域的应用前景并回顾相关文献;最后,第六部分进行总结并展望未来研究方向。
2. VMD和LSTM的基本原理
2.1 变分模态分解 (VMD)
变分模态分解(VMD)是由Dragomiretskiy和Zosso于2014年提出的一种自适应、非递归的信号处理方法。它将信号分解过程视为一个变分优化问题,通过求解约束优化问题,得到一系列有限个具有特定稀疏和重构特性的IMF分量。每个IMF被定义为一个调幅-调频(AM-FM)信号,其瞬时频率围绕其中心频率变化。
为了解决上述约束变分问题,VMD引入了二次惩罚项(惩罚约束违反)和拉格朗日乘子法,将约束问题转化为无约束问题。
其中,⋅^⋅^ 表示傅里叶变换,nn 表示迭代次数,ττ 是拉格朗日乘子的更新步长。
VMD相比于EMD系列方法具有以下优点:
- 严格的数学基础:
基于变分优化,具有清晰的理论解释。
- 鲁棒性:
对噪声不敏感,能有效抑制模态混叠(mode mixing)现象。
- 并行计算:
各个模态的更新可以并行进行。
- 可控性:
通过设置模态数 KK 和二次惩罚因子 αα 可以控制分解结果。
VMD的主要挑战在于需要预先指定分解模态数 KK 和二次惩罚因子 αα,这两个参数的选择对分解结果影响较大。合适的参数可以通过经验、试凑或利用其他准则(如包络熵、互相关系数等)来确定。
2.2 长短时记忆网络 (LSTM)
长短时记忆(LSTM)网络是一种特殊的循环神经网络(RNN),由Hochreiter和Schmidhuber于1997年提出,旨在解决传统RNN在处理长序列时出现的梯度消失或梯度爆炸问题。LSTM通过引入“门”结构(输入门、遗忘门、输出门)和一个细胞状态(Cell State),有效地控制信息的流动,从而能够学习并记忆长期依赖关系。
LSTM的每个单元(或称为细胞)包含以下核心组件:
- 细胞状态(Cell State):
这是LSTM的核心,它沿着整个时间序列传递信息,像一条传送带一样,能够携带长期记忆。新的信息可以添加到细胞状态中,旧的信息可以从细胞状态中移除。
- 遗忘门(Forget Gate):
决定从细胞状态中丢弃哪些信息。它接收当前输入 xtxt 和前一时刻的隐藏状态 ht−1ht−1,并通过 Sigmoid 函数输出一个介于0到1之间的向量,表示保留或丢弃细胞状态中对应信息的分量。
ft=σ(Wf⋅[ht−1,xt]+bf) - 输入门(Input Gate):
决定哪些新的信息将被存入细胞状态。它包含两个部分:
输入门本身:一个 Sigmoid 层决定哪些值将被更新。
it=σ(Wi⋅[ht−1,xt]+bi)
LSTM通过这些门控机制,可以在序列中选择性地记忆或遗忘信息,从而有效地处理时间序列中的长期依赖问题。相比于标准RNN,LSTM在处理具有长期依赖性的任务(如语言建模、机器翻译、时间序列预测等)上表现出显著优势。
在时间序列预测任务中,LSTM通常被用于构建模型来学习序列数据中的复杂模式。通过将历史时间点的观测值作为输入,LSTM可以预测未来时间点的数值。多层LSTM结构或双向LSTM(Bi-LSTM)结构常被用于进一步提高模型的表达能力。
3. VMD-LSTM模型的构建
VMD-LSTM模型是一种典型的“分解-预测-重构”混合模型。其构建过程主要包括以下几个步骤:
3.1 原始时间序列数据收集与预处理
首先,需要收集待预测的原始时间序列数据。数据预处理是模型构建的关键步骤,包括:
- 缺失值处理:
对数据中的缺失值进行填充或删除。
- 异常值检测与处理:
识别并处理数据中的异常值,以减少其对模型性能的影响。
- 数据标准化/归一化:
将数据缩放到特定范围(如 [0, 1] 或 [-1, 1]),以消除不同特征之间的量纲差异,加速模型训练并提高稳定性。常用的方法包括最小-最大标准化和Z-score标准化。
- 平稳性检验(可选):
对数据进行平稳性检验(如ADF检验),虽然VMD能够处理非平稳数据,但了解数据的平稳性有助于后续建模和分析。
3.2 VMD分解
对预处理后的原始时间序列 f(t) 进行VMD分解。这一步骤是VMD-LSTM模型的关键,它将复杂的原始信号分解为一系列相对简单的IMF分量。
- 确定模态数 KK:
模态数 KK 是VMD分解的核心参数。选择过小的 KK 可能导致模态混叠,无法完全分离不同的频率成分;选择过大的 KK 可能产生虚假模态或过度分解,增加后续建模的复杂度。 KK 的选择通常需要结合经验、数据特征或通过一些辅助方法确定,例如观察VMD分解后各IMF的中心频率或利用包络熵、相关系数等指标进行评估。
- 确定二次惩罚因子 αα:
αα 控制着IMF的带宽和重构精度。较大的 αα 会产生带宽较窄的IMF,但可能导致欠分解;较小的 αα 会产生带宽较宽的IMF,可能导致过度分解。 αα 的选择通常与原始信号的噪声水平有关,也可以通过试凑或优化方法确定。
- 执行VMD分解:
通常,IMF分量按照其中心频率从低到高排列,残余项包含数据的整体趋势或剩余的非分解成分。
3.3 LSTM建模与预测
将VMD分解得到的每一个IMF分量以及残余项,视为一个独立的子序列,分别构建并训练LSTM模型进行预测。
- 数据分割:
将每个子序列的数据集划分为训练集、验证集(可选)和测试集。通常采用时间滑动窗口的方式进行划分。
- 构建输入-输出对:
对于每个子序列,需要构建用于LSTM模型训练的输入-输出对。
- 构建LSTM模型:
为每个子序列分别构建一个LSTM网络模型。LSTM网络的结构可以根据实际需求进行调整,包括LSTM层数、每层的神经元数量、是否使用Dropout层、是否使用全连接层等。
- 模型训练:
使用训练集对每个子序列对应的LSTM模型进行训练。选择合适的损失函数(如均方误差MSE)和优化器(如Adam)。在训练过程中,可以通过验证集来监控模型性能,并进行超参数调优。
- 模型预测:
使用训练好的每个LSTM模型对各自的子序列在测试集上进行预测。
3.4 结果重构
将每个子序列的预测结果进行叠加,得到原始时间序列的最终预测结果。
4. VMD-LSTM模型的协同作用与参数选择
VMD-LSTM模型能够有效地结合VMD和LSTM的优势,形成协同作用,提升预测性能。
4.1 协同作用机制
- 去噪与平滑:
VMD可以将原始信号分解为不同频率的IMF分量,高频分量往往包含更多的噪声和随机波动,低频分量则反映主要趋势和周期性。通过分别建模,LSTM可以更专注于学习每个分量的内部模式,减少噪声对预测的干扰。
- 特征提取:
VMD将原始复杂的非平稳信号分解为一系列相对平稳或具有特定频率特征的IMF分量,这可以看作是一种有效的特征提取过程。每个IMF代表了原始信号在特定频带内的波动模式,这使得LSTM更容易捕捉到不同尺度的变化规律。
- 降低复杂性:
原始时间序列的复杂性被分散到多个子序列中。对每个相对简单的子序列进行建模比直接对高度复杂的原始序列建模更容易,从而降低了LSTM模型的学习难度。
- 捕捉多尺度特征:
不同IMF分量对应着原始信号在不同时间尺度上的波动。通过对每个IMF分别建模,VMD-LSTM模型能够同时捕捉到快速变化的高频特征和缓慢变化的低频特征,提高了模型的泛化能力。
4.2 关键参数选择
VMD-LSTM模型的性能在很大程度上取决于VMD阶段的参数选择以及每个LSTM子模型的参数设置。
-
VMD参数:
- 经验法:
根据数据的物理意义或先验知识来估计。
- 迭代法:
从一个较小的 KK 开始,逐步增加,观察分解结果(如中心频率、瞬时频率变化)直到出现模态混叠或虚假模态,选择合适的 KK。
- 信息准则法:
利用包络熵、互相关系数、样本熵等指标,选择使得IMF分量具有最优特性的 KK 值。
- 模态数 KK:
如前所述,KK 的选择至关重要。常用的确定方法包括:
- 二次惩罚因子 αα:
αα 的选择影响分解的严格程度和IMF的带宽。通常在一定范围内进行尝试,选择使得IMF具有较窄带宽且重构误差较小的 αα 值。
- 拉格朗日乘子更新步长 ττ:
ττ 的选择影响ADMM算法的收敛速度和稳定性,通常取一个大于0的常数,例如 0。
- 迭代停止条件:
控制ADMM算法的收敛精度,通常设置一个较小的容差值。
- 经验法:
-
LSTM参数:
- 输入窗口大小(Look-back window size):
决定LSTM模型预测未来一个时间点时需要考虑的历史数据长度。这个参数需要根据时间序列的周期性和依赖性来确定,通常通过实验调优。
- LSTM层数:
增加LSTM层数可以提高模型的非线性建模能力,但也可能导致过拟合和训练困难。
- 神经元数量:
每层LSTM神经元的数量影响模型的容量,需要权衡模型的复杂度和计算成本。
- Dropout率:
Dropout是一种正则化技术,可以防止过拟合,尤其在训练数据较少或模型复杂时。
- 学习率(Learning Rate):
控制模型训练过程中参数更新的步长,影响收敛速度和最终性能。
- 批处理大小(Batch Size):
影响训练的稳定性和收敛速度。
- 训练轮数(Epochs):
训练数据集的次数。
- 输入窗口大小(Look-back window size):
VMD参数和LSTM参数的选择往往相互影响,通常需要进行交叉验证或网格搜索等方法来寻找最优的参数组合。
5. VMD-LSTM模型在不同领域的应用
VMD-LSTM混合模型凭借其处理非平稳、多成分时间序列数据的能力,在众多领域展现出巨大的应用潜力。以下是一些典型的应用领域:
- 电力系统负荷预测:
电力负荷具有复杂的非线性和非平稳特性,受多种因素影响(如天气、日期类型、经济活动等)。VMD可以分解出不同频率的负荷分量(如日周期、周周期、年度周期等),然后使用LSTM分别预测,能够显著提高短期和中长期负荷预测的精度。
- 风速/光伏功率预测:
风速和光伏功率受天气条件影响剧烈,波动性强。VMD能够将风速或光伏功率分解为包含不同频率成分的模态,从而帮助LSTM更准确地捕捉不同尺度的波动特征,提高预测的准确性和可靠性。
- 金融时间序列预测:
股票价格、外汇汇率等金融时间序列具有高度的非线性和非平稳性,并且包含复杂的交易噪音。VMD可以帮助分离出不同频率的波动成分,使得LSTM能够更好地学习市场趋势和周期性模式,辅助投资决策。
- 交通流量预测:
城市交通流量受多种因素影响,表现出复杂的动态特性。VMD可以分解出不同时间尺度的交通流量模式(如高峰时段、平峰时段),结合LSTM进行预测,有助于优化交通管理和路径规划。
- 工业过程控制与状态监测:
工业生产过程中的许多参数(如温度、压力、流量)都是时间序列,其变化反映了设备运行状态。VMD-LSTM可以用于预测关键参数的未来变化,或对设备状态进行早期预警和故障诊断。
- 环境监测与预测:
空气质量指数、水质参数、污染物浓度等环境时间序列通常具有非线性和非平稳性。VMD-LSTM可以用于预测环境指标的未来趋势,为环境保护和污染控制提供支持。
- 医疗健康:
生理信号(如心电图、脑电图)通常是复杂的非平稳信号。VMD可以用于分解这些信号,提取有用的特征,并结合LSTM进行疾病诊断或状态监测。
在上述应用领域,许多研究工作已经验证了VMD-LSTM模型相对于单一LSTM模型或其他传统方法的优越性。例如,在电力负荷预测领域,文献[1]提出了一种基于VMD-LSTM的短期负荷预测模型,并通过实例证明了其比单一LSTM和EMD-LSTM模型具有更高的预测精度。在风速预测领域,文献[2]将VMD应用于风速分解,再利用LSTM进行预测,取得了较好的效果。这些研究成果表明,VMD-LSTM模型是处理复杂非平稳时间序列预测问题的有效方法。
6. 总结与展望
本文深入研究了变分模态分解(VMD)与长短时记忆(LSTM)神经网络相结合的混合模型——VMD-LSTM。通过详细阐述VMD和LSTM的基本原理,本文重点探讨了VMD-LSTM模型的构建流程、协同作用机制和关键参数选择。理论分析和文献回顾表明,VMD-LSTM模型通过 leveraging VMD的分解能力,能够有效地将复杂的非平稳时间序列分解为一系列相对简单的模态,从而降低了LSTM模型的建模难度,提高了模型的预测精度和鲁棒性。VMD-LSTM模型在电力、能源、金融、交通、工业和环境等多个领域展现出广阔的应用前景。
尽管VMD-LSTM模型取得了显著进展,但仍存在一些值得深入研究的方向:
- VMD参数的自适应选择:
VMD参数(特别是模态数 KK 和二次惩罚因子 αα)的选择目前很大程度上依赖于经验或试凑。未来的研究可以探索更加智能和自适应的方法来确定这些参数,例如利用机器学习或优化算法自动寻找最优参数组合。
- 残余项的处理:
残余项通常包含数据的整体趋势或剩余的非分解成分。除了使用LSTM进行预测外,可以尝试结合其他时间序列模型(如ARIMA、指数平滑等)来处理残余项,以进一步提高预测性能。
- 不同分解方法与深度学习模型的结合:
除了VMD和LSTM,还可以探索将其他先进的信号分解方法(如EWT、ITD等)与其他深度学习模型(如GRU、Transformer、CNN等)相结合的混合模型,以应对不同类型的时间序列数据。
- 多步预测能力的提升:
目前大部分VMD-LSTM的研究集中在单步预测。对于多步预测问题,如何有效地将每个模态的单步预测结果转化为多步预测结果,并考虑不同模态之间的相互作用,是一个重要的研究方向。
- 可解释性研究:
深度学习模型通常被视为“黑箱”,其内部决策过程难以解释。对于VMD-LSTM模型,可以尝试分析不同模态的预测结果及其对最终预测的贡献,以增强模型的可解释性。
- 实时性与计算效率:
VMD分解过程和多个LSTM子模型的训练可能需要较大的计算资源和时间。对于需要实时预测的应用场景,提高模型的计算效率是一个挑战。可以探索并行计算、模型剪枝或量化等技术来优化模型的实时性能。
- 与其他特征的融合:
除了时间序列本身,外部因素(如天气、政策、节假日等)也会影响预测结果。未来的研究可以探索如何将这些外部特征与VMD-LSTM模型相结合,进一步提升预测精度。
⛳️ 运行结果
🔗 参考文献
[1] 黄睿,朱玲俐,高峰,等.基于变分模态分解的卷积长短时记忆网络短期电力负荷预测方法[J].现代电力, 2024(001):041.
[2] 张明岳,李丽敏,温宗周.基于变分模态分解和双向长短时记忆神经网络模型的滑坡位移预测[J].山地学报, 2021(006):039.
[3] 雷学文.基于深度神经网络的风功率日前预测与电力系统联合调度研究[D].西安理工大学,2018.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇