电网静态电压稳定性评估方法【IEEE33节点】附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电压稳定性是电力系统安全稳定运行的核心要素之一。随着现代电力系统规模的不断扩大、负荷密度的持续增长以及新能源渗透率的日益提高,电压稳定问题日益突出,尤其是在极端运行条件下,系统电压可能因功角不稳定、负荷扰动或设备故障而失稳,导致大面积停电,造成严重的经济损失和社会影响。因此,对电力系统进行电压稳定性评估,准确掌握系统的电压裕度和薄弱环节,对于预防电压崩溃、提高系统可靠性至关重要。

本文将深入探讨电网静态电压稳定性评估方法,并以经典的IEEE 33节点配电系统作为研究对象,详细阐述评估方法的应用过程和结果分析。静态电压稳定性评估主要关注系统在稳态运行下的电压稳定性,其基本原理是通过分析系统稳态模型,判断系统电压对负荷变化或参数变化的敏感性,以及系统是否能够承受预期的负荷增长或运行状态变化而不发生电压崩溃。相较于动态电压稳定性评估需要考虑系统动态特性和时域仿真,静态评估方法计算效率高,适用于快速评估系统的电压稳定裕度,为运行人员提供决策支持。

1. 静态电压稳定性评估的基本概念

静态电压稳定性是指系统在保持功角稳定的前提下,承受负荷增长或系统运行方式变化的能力。其核心在于研究系统运行点在功角稳定区间内的电压与负荷特性。当系统电压随着负荷的增加而逐渐降低,直到某个极限点(称为电压稳定极限点或鼻点),此时电压对负荷的灵敏度无穷大,再增加负荷,电压将迅速下降,系统失去电压稳定,发生电压崩溃。

静态电压稳定性评估的主要目标是确定系统的电压稳定裕度,即系统在保持电压稳定的前提下,可以额外增加的负荷量或系统可以承受的运行状态变化程度。常用的静态电压稳定性评估指标包括:

  • 电压裕度:

     通常指系统运行点到电压稳定极限点的距离,可以表示为负荷裕度、发电裕度或电压距离等。

  • 电压稳定裕度指数:

     衡量系统电压对负荷变化的敏感性,常用的有L指数、V-Q灵敏度等。

静态电压稳定性评估方法主要基于电力系统稳态模型,即电力潮流模型。通过对潮流方程进行求解或分析,可以得到系统在不同运行状态下的电压分布和功率平衡情况。

2. 静态电压稳定性评估方法分类

静态电压稳定性评估方法多种多样,根据其原理和侧重点可以分为以下几类:

  • 基于潮流计算的方法:

     这是最基础也是最常用的方法。通过对系统进行一系列的潮流计算,逐步增加系统负荷或改变运行方式,直到潮流计算不再收敛,此时认为系统达到电压稳定极限。通过记录极限点时的负荷水平和电压分布,可以评估系统的电压裕度。这种方法的优点是直观易懂,计算过程与实际系统运行相似,但计算量相对较大,尤其是在需要扫描多种运行方式和故障场景时。

  • 基于灵敏度分析的方法:

     该方法利用电力系统方程的线性化,通过计算电压对负荷或其它参数的灵敏度矩阵,来评估系统的电压稳定性。例如,V-Q灵敏度分析可以通过计算节点电压对无功功率注入的灵敏度,来判断节点的电压支撑能力。这种方法计算效率高,可以快速识别系统的电压薄弱节点和线路,但其准确性依赖于线性化模型在运行点附近的精度。

  • 基于特征值分析的方法:

     通过分析系统雅可比矩阵(或其简化形式)的特征值,来判断系统的电压稳定性。当系统运行点接近电压稳定极限时,雅可比矩阵将变得奇异或接近奇异,其特征值中会出现接近零的特征值。最小特征值可以作为衡量系统电压稳定裕度的指标,特征向量可以指示电压崩溃的模式。这种方法理论基础扎实,能够揭示系统的稳定性本质,但计算量相对较大,且特征值的物理意义不如电压裕度等指标直观。

  • 基于优化技术的方法:

     将电压稳定评估问题转化为一个优化问题,例如最大化负荷裕度或最小化电压偏离度等。通过求解优化问题,可以得到系统的电压稳定极限和相应的运行方式。这种方法可以考虑各种约束条件,得到最优的运行策略,但对优化算法的要求较高。

  • 基于人工智能和机器学习的方法:

     随着人工智能技术的发展,一些基于数据驱动的评估方法也逐渐兴起。通过训练机器学习模型,利用历史运行数据或仿真数据,学习系统运行状态与电压稳定裕度之间的关系,实现快速的电压稳定性评估和预测。这种方法无需建立精确的数学模型,但需要大量的训练数据和合适的特征工程。

3. IEEE 33节点配电系统简介

IEEE 33节点配电系统是一个经典的配电网测试系统,常用于配电网潮流计算、损耗分析、电压稳定性研究等。该系统包含33个节点和32条支路,采用辐射状结构,其中节点1为平衡节点,连接外部输电网。系统负荷为恒功率负荷,分布在各个节点上。IEEE 33节点系统结构相对简单,易于建模和仿真,是研究配电网电压稳定问题的理想测试平台。

4. 基于潮流计算的IEEE 33节点电压稳定性评估

图片

具体评估步骤如下:

  1. 建立系统模型:

     根据IEEE 33节点系统的拓扑结构、支路参数(电阻、电抗)以及节点负荷数据,建立电力潮流模型。节点1设为平衡节点,提供系统所需的有功和无功功率。

  2. 设置基准运行点:

     使用常规潮流计算方法,求解系统在正常负荷水平下的运行状态,得到各节点电压幅值和相角。

  3. 选择负荷增加模式:

     可以选择等比例增加所有节点的负荷,或者只增加特定节点的负荷,或者考虑负荷的增长模式与时间变化规律。在本文中,我们将采用等比例增加所有节点有功和无功负荷的方式。

  4. 执行累进潮流计算:

     从基准运行点开始,逐步增加负荷增加参数λ,并求解拓展后的潮流方程。在每一步迭代中,都需要计算潮流方程的雅可比矩阵,并通过牛顿-拉夫逊法或其他方法进行求解。

  5. 判断收敛和极限:

     持续增加λ,直到潮流计算不再收敛。此时的λ值对应的运行点即为电压稳定极限点。记录极限点时的负荷水平和各节点电压。

  6. 绘制P-V曲线或Q-V曲线:

     可以选择一个或多个关键节点,绘制该节点电压随总负荷(或负荷增加参数λ)变化的曲线,即P-V曲线。或者绘制节点电压随节点无功功率注入变化的曲线,即Q-V曲线。P-V曲线的“鼻点”即为电压稳定极限点。

  7. 评估电压裕度:

     根据累进潮流计算得到的极限点负荷,计算系统的负荷裕度,即极限负荷与基准负荷之差。

5. IEEE 33节点系统电压稳定性评估结果分析

使用CPF方法对IEEE 33节点系统进行仿真分析,可以得到以下结果:

  • P-V曲线:

     绘制各个节点的P-V曲线,可以清晰地观察到电压随负荷增加而下降的趋势,以及各节点到达电压稳定极限的顺序。靠近负荷中心的末端节点通常电压较低,且更容易达到电压稳定极限。

  • 电压分布:

     在不同负荷水平下,观察系统的电压分布。随着负荷的增加,各节点电压普遍下降,且靠近负荷末端的节点电压下降幅度更大。

  • 电压稳定极限:

     确定系统能够承受的最大负荷增加比例,即负荷裕度。这个负荷裕度的大小直接反映了系统的电压稳定能力。

  • 薄弱节点和线路:

     通过分析电压下降幅度最大的节点和无功潮流变化最剧烈的线路,可以识别系统的电压薄弱环节。这些薄弱环节是需要重点加强和改造的地方。

示例分析(假设仿真结果):

经过CPF仿真,假设IEEE 33节点系统在所有节点负荷等比例增加2.5倍时达到电压稳定极限。这意味着该系统的负荷裕度为1.5倍基准负荷。在电压稳定极限点,靠近馈线末端的节点,如节点18、22、33等,电压下降幅度最大,电压值最低,成为系统的电压薄弱节点。同时,为这些节点提供功率的支路,如连接节点17到18、节点21到22、节点32到33的支路,其无功潮流也可能达到极限,成为系统的薄弱线路。

通过分析P-V曲线,可以发现不同节点的电压下降趋势存在差异。靠近平衡节点和电源的节点电压下降相对缓慢,而远离电源的末端节点电压下降迅速。这表明在辐射状配电网中,电压支撑能力随着距离电源的增加而减弱。

6. 影响静态电压稳定性的因素

影响电力系统静态电压稳定性的因素有很多,主要包括:

  • 系统负荷特性:

     负荷的增长速度、负荷的组成(恒功率、恒电流、恒阻抗负荷比例)、负荷对电压和频率的特性都会影响电压稳定性。

  • 电源特性:

     发电机的电压调节能力、无功出力裕度以及发电机与系统之间的距离都会影响系统的电压支撑能力。

  • 网络结构:

     网络拓扑结构、线路参数(电阻、电抗)、变压器参数等都会影响潮流分布和电压下降。辐射状配电网的电压稳定性通常不如环状或互联电网。

  • 无功补偿配置:

     无功补偿设备的容量、位置和控制策略对提高系统电压稳定性至关重要。合理配置无功补偿可以提高电压水平、减小电压波动,并增加电压稳定裕度。

  • 运行方式:

     系统运行的基态电压水平、线路的开断状态、变压器的分接头位置等都会影响系统的电压稳定性。

7. 静态电压稳定性评估的应用

静态电压稳定性评估在电力系统规划和运行中具有重要的应用价值:

  • 规划阶段:

     在电网规划阶段,可以通过电压稳定性评估,对新建线路、变电站、电源等设施的规模和位置进行优化,确保未来电网的安全可靠运行。

  • 运行阶段:

     在电网运行阶段,可以通过实时或定期进行电压稳定性评估,监测系统的电压稳定裕度,识别潜在的电压稳定风险。当评估结果显示系统电压稳定裕度不足时,可以采取相应的控制措施,如调整发电机出力、投切无功补偿装置、调整变压器分接头等,预防电压崩溃。

  • 故障分析:

     在系统发生故障后,可以通过电压稳定性评估,分析故障对系统电压稳定性的影响,为故障恢复和运行调整提供依据。

  • 制定应急预案:

     根据电压稳定性评估结果,可以制定应对电压不稳定事件的应急预案,例如负荷切除策略、发电机紧急支援等。

8. 总结与展望

静态电压稳定性评估是电力系统安全运行的重要保障之一。基于潮流计算的累进负荷增加法是一种有效且直观的评估方法,通过对IEEE 33节点系统的分析,可以清晰地展示评估过程和结果。这种方法能够识别系统的电压薄弱节点和线路,为电网规划和运行提供重要的参考信息。

然而,静态电压稳定性评估也存在一定的局限性。它忽略了系统的动态特性,无法完全反映系统在动态扰动下的电压响应。因此,在对系统进行全面的电压稳定性评估时,还需要结合动态电压稳定性分析方法。

未来的研究方向可以包括:

  • 考虑负荷的动态特性和不确定性:

     实际系统中的负荷具有时变性和不确定性,将其纳入静态电压稳定性评估模型将提高评估的准确性。

  • 考虑新能源发电的影响:

     大规模新能源并网对电网的电压稳定性带来了新的挑战,需要研究考虑新能源特性的电压稳定性评估方法。

  • 开发更高效和精确的评估算法:

     针对大规模电力系统,需要开发计算效率更高的静态电压稳定性评估算法。

  • 将静态和动态电压稳定性评估方法相结合:

     发展综合性的电压稳定性评估方法,同时考虑系统的静态和动态特性,提供更全面的评估结果。

  • 利用人工智能技术提升评估能力:

     探索利用机器学习等技术,实现电压稳定性评估的智能化和预测化。

⛳️ 运行结果

图片

🔗 参考文献

[1] 张曦,张宁,龙飞,等.分布式电源接入配网对其静态电压稳定性影响多角度研究[J].电力系统保护与控制, 2017, 45(6):6.DOI:10.7667/PSPC160452.

[2] 杨景旭.含分布式电源的配电网静态电压稳定性研究[D].华北电力大学;华北电力大学(北京),2014.DOI:10.7666/d.Y2659008.

[3] 彭光斌,詹红霞,黄培东,等.基于自适应粒子群算法优化DG的配网静态电压稳定性提高策略[J].电力系统保护与控制, 2017, 45(8):7.DOI:10.7667/PSPC160574.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值